摘要:
A vehicle powertrain controller includes a fuzzy logic-based adaptive algorithm with a learning capability that estimates a driver's long term driving preferences. An adaptive algorithm arbitrates competing requirements for good fuel economy, avoidance of intrusiveness and vehicle drivability. Vehicle performance is maintained in accordance with a driver's driving style.
摘要:
A system and method for sensing vehicle global pitch angle and rate that uses global velocities measured from a single antenna global positioning system (GPS) receiver together with sensor fusion algorithms involving sensor signals and other computed signals. This constructed, or computed, vehicle body's pitch angle may replace the role of a pitch rate sensor in an integrated stability control system. Namely, it achieves enhanced vehicle state estimation without the need for a pitch rate sensor.
摘要:
One or more embodiments of the present application may provide a system and method for monitoring driver inputs and vehicle parameters, assessing a driver's acceleration behavior, and providing short-term and/or long-term feedback to the driver relating to the driver's acceleration behavior. The acceleration behavior feedback can be used to coach future driving acceleration behavior that may translate into better long-term driving habits, which in turn may lead to improvements in fuel economy or vehicle range. Moreover, the acceleration behavior feedback can be adapted to a driver based upon how responsive the driver is to the feedback.
摘要:
A method for tuning a vehicle's performance may include measuring a plurality of parameters representing the vehicle's current handling condition and the vehicle's limit handling condition, determining a margin between the vehicle's current handling condition and limit handling condition, characterizing the driver's dynamic control of the vehicle based on the margin, and altering at least one tunable vehicle performance parameter based on the characterization.
摘要:
The present disclosure provides a system and a method for mitigating vehicle rollovers, the method comprises monitoring a vehicular tilt and sensing a vehicular rollover in a particular direction, through a tilt sensor. Further, the system determines an occurrence of a rollover according to a calculated tilt threshold, through a central processing unit. Steering the vehicle in the sensed direction of the rollover, accelerating the vehicle in the same direction, and braking the vehicle upon sensing a decrease in the rollover, all being controlled through a controller, enables the vehicle to eventually stabilize and return to track.
摘要:
One or more embodiments of the present application may provide a system and method for monitoring driver inputs and vehicle parameters, assessing a driver's braking deceleration behavior, and providing short-term and/or long-term feedback to the driver relating to the driver's braking deceleration behavior. The braking deceleration behavior feedback can be used to coach future braking deceleration behavior that may translate into better long-term driving habits, which in turn may lead to improvements in fuel economy or vehicle range. Moreover, the braking deceleration behavior feedback can be adapted to a driver based upon how responsive the driver is to the feedback.
摘要:
A method and system for improving automatic engine stopping and starting is presented. In one example, the method adjusts conditions for engine stopping in response to operating conditions that are evaluated according to one or more cost functions. The method may improve vehicle fuel economy and limit driver annoyances.
摘要:
A vehicle's dynamic handling state, driver inputs to the vehicle, etc. may be examined to determine one or more measures of driver workload. Driver interface tasks may then be delayed and/or prevented from executing based on the driver workload so as to not increase the driver workload. Alternatively, driver interface tasks may be scheduled for execution based on the driver workload and caused to execute according to the schedule, for example, to minimize the impact the executing driver interface tasks have on driver workload.
摘要:
A computer implemented method for efficiently operating a vehicle includes sending vehicle configuration data and route related data to a remote system. The method further includes receiving an optimization strategy, based at least in part on the vehicle configuration data and route related data, for optimizing at least one vehicle adjustable system for an upcoming road segment. Also, the method includes controlling the at least one vehicle adjustable system based on the optimization strategy over the upcoming road segment.
摘要:
A vehicle powertrain controller includes a fuzzy logic-based adaptive algorithm with a learning capability that estimates a driver's long term driving preferences. An adaptive algorithm arbitrates competing requirements for good fuel economy, avoidance of intrusiveness and vehicle drivability. Vehicle performance is maintained in accordance with a driver's driving style.