摘要:
Lamps and bulbs are disclosed generally comprising different combinations and arrangement of a light source, one or more wavelength conversion materials, regions or layers which are positioned separately or remotely with respect to the light source, and a separate diffusing layer. This arrangement allows for the fabrication of lamps and bulbs that are efficient, reliable and cost effective and can provide an essentially omni-directional emission pattern, even with a light source comprised of a co-planar arrangement of LEDs. Additionally, this arrangement allows aesthetic masking or concealment of the appearance of the conversion regions or layers when the lamp is not illuminated. Some embodiments of the present invention utilize LED chips to provide one or more lighting components instead of providing the components through phosphor conversion. This can provide for lamps that can be operated with lower power and can be manufactured at lower cost. In one embodiment, a red lighting component can be provided by red emitting LEDs as opposed to a red conversion material.
摘要:
Lamps and bulbs are disclosed generally comprising different combinations and arrangements of a light source, one or more wavelength conversion materials, regions or layers which are positioned separately or remotely with respect to the light source, and a separate diffusing layer. This arrangement allows for the fabrication of lamps and bulbs that are efficient, reliable and cost effective and can provide an essentially omni-directional emission pattern, even with a light source comprised of a co-planar arrangement of LEDs. The lamps according to the present invention can also comprise thermal management features that provide for efficient dissipation of heat from the LEDs, which in turn allows the LEDs to operate at lower temperatures. The lamps can also comprise optical elements to help change the emission pattern from the generally directional (e.g. Lambertian) pattern of the LEDs to a more omni-directional pattern.
摘要:
Lamps and bulbs are disclosed generally comprising different combinations and arrangement of a light source, one or more wavelength conversion materials, regions or layers which are positioned separately or remotely with respect to the light source, and a separate diffusing layer. This arrangement allows for the fabrication of lamps and bulbs that are efficient, reliable and cost effective and can provide an essentially omni-directional emission pattern, even with a light source comprised of a co-planar arrangement of LEDs. Additionally, this arrangement allows aesthetic masking or concealment of the appearance of the conversion regions or layers when the lamp is not illuminated. Some embodiments of the present invention utilize LED chips to provide one or more lighting components instead of providing the components through phosphor conversion. This can provide for lamps that can be operated with lower power and can be manufactured at lower cost. In one embodiment, a red lighting component can be provided by red emitting LEDs as opposed to a red conversion material.
摘要:
An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and a remote phosphor carrier having at least one conversion material. The phosphor carrier can be remote to the light sources and mounted to the heat sink so that heat from the phosphor carrier spreads into the heat sink. The phosphor carrier can have a three-dimensional shape, and can comprise a thermally conductive transparent material and a phosphor layer, with an LED based light source mounted to the heat sink such that light from the light source passes through the phosphor carrier. At least some of the LED light is converted by the phosphor carrier, with some lamp embodiments emitting a white light combination of LED and phosphor light. The phosphors in the phosphor carriers can be arranged to operate at a lower temperature to thereby operate at greater phosphor conversion efficiency and with reduced heat related damage to the phosphor. The lamps or bulbs can also comprise a diffuser over the phosphor carrier to distribute light and to conceal the phosphor carrier.
摘要:
An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and a remote phosphor carrier having at least one conversion material. The phosphor carrier can be remote to the light sources and mounted to the heat sink so that heat from the phosphor carrier spreads into the heat sink. The phosphor carrier can have a three-dimensional shape, and can comprise a thermally conductive transparent material and a phosphor layer, with an LED based light source mounted to the heat sink such that light from the light source passes through the phosphor carrier. At least some of the LED light is converted by the phosphor carrier, with some lamp embodiments emitting a white light combination of LED and phosphor light. The phosphors in the phosphor carriers can be arranged to operate at a lower temperature to thereby operate at greater phosphor conversion efficiency and with reduced heat related damage to the phosphor. The lamps or bulbs can also comprise a diffuser over the phosphor carrier to distribute light and to conceal the phosphor carrier.
摘要:
LED packages, and LED lamps and bulbs, are disclosed that are arranged to minimize the CRI and efficiency losses resulting from the overlap of conversion material emission and excitation spectrum. In different devices having conversion materials with this overlap, the present invention arranges the conversion materials to reduce the likelihood that re-emitted light from a first conversion materials will encounter the second conversion material to minimize the risk of re-absorption. In some embodiments this risk is minimized by different arrangements where there is separation between the two phosphors. In some embodiments this separation results less than 50% of re-emitted light from the one phosphor passing into the phosphor where it risks re-absorption.
摘要:
LED packages, and LED lamps and bulbs, are disclosed that are arranged to minimize the CRI and efficiency losses resulting from the overlap of conversion material emission and excitation spectrum. In different devices having conversion materials with this overlap, the present invention arranges the conversion materials to reduce the likelihood that re-emitted light from a first conversion materials will encounter the second conversion material to minimize the risk of re-absorption. In some embodiments this risk is minimized by different arrangements where there is separation between the two phosphors. In some embodiments this separation results less than 50% of re-emitted light from the one phosphor passing into the phosphor where it risks re-absorption.
摘要:
A submount for a solid state lighting package includes a support member having upper and lower surfaces, a first side surface, and a second side surface opposite the first side surface, a first electrical bondpad on the upper surface of the support member and having a first bonding region proximate the first side surface of the support member and a second bonding region extending toward the second side surface of the support member, and a second electrical bondpad on the upper surface of the support member having a die mounting region proximate the first side surface of the support member and an extension region extending toward the second side surface of the support member. The die mounting region of the second electrical bondpad may be configured to receive an electronic device. The submount further includes a third electrical bondpad on the upper surface of the support member and positioned between the second side surface of the support member and the die mounting region of the second electrical bondpad.
摘要:
A submount for a solid state lighting package includes a support member having upper and lower surfaces, a first side surface, and a second side surface opposite the first side surface, a first electrical bondpad on the upper surface of the support member and having a first bonding region proximate the first side surface of the support member and a second bonding region extending toward the second side surface of the support member, and a second electrical bondpad on the upper surface of the support member having a die mounting region proximate the first side surface of the support member and an extension region extending toward the second side surface of the support member. The die mounting region of the second electrical bondpad may be configured to receive an electronic device. The submount further includes a third electrical bondpad on the upper surface of the support member and positioned between the second side surface of the support member and the die mounting region of the second electrical bondpad.