摘要:
Phase change devices, particularly multi-terminal phase change devices, include first and second active terminals bridged together by a phase-change material whose conductivity can be modified in accordance with a control signal applied to a control electrode. Structure allows application in which an electrical connection can be created between two active terminals, with control of the connection being effected using a separate terminal or terminals. Accordingly, the resistance of the heater element can be increased independently from the resistance of the path between the two active terminals, allowing use of smaller heater elements thus requiring less current to create the same amount of Joule heating per unit area. The resistance of the heating element does not impact the total resistance of the phase change device. Programming control can be placed outside of main signal path through the phase change device, reducing impact of associated capacitance and resistance of the device.
摘要:
Phase change devices, and particularly multi-terminal phase change devices, include first and second active terminals bridged together by a phase-change material whose conductivity can be modified in accordance with a control signal applied to a control electrode. This structure allows an application in which an electrical connection can be created between the two active terminals, with the control of the connection being effected using a separate terminal or terminals. Accordingly, the resistance of the heater element can be increased independently from the resistance of the path between the two active terminals. This allows the use of smaller heater elements thus requiring less current to create the same amount of Joule heating per unit area. The resistance of the heating element does not impact the total resistance of the phase change device. The programming control can be placed outside of the main signal path through the phase change device, reducing the impact of the associated capacitance and resistance of the device.
摘要:
Phase change devices, and particularly multi-terminal phase change devices, include first and second active terminals bridged together by a phase-change material whose conductivity can be modified in accordance with a control signal applied to a control electrode. This structure allows an application in which an electrical connection can be created between the two active terminals, with the control of the connection being effected using a separate terminal or terminals. Accordingly, the resistance of the heater element can be increased independently from the resistance of the path between the two active terminals. This allows the use of smaller heater elements thus requiring less current to create the same amount of Joule heating per unit area. The resistance of the heating element does not impact the total resistance of the phase change device. The programming control can be placed outside of the main signal path through the phase change device, reducing the impact of the associated capacitance and resistance of the device.
摘要:
Reconfigurable electronic structures and circuits using programmable, non-volatile memory elements. The programmable, non-volatile memory elements may perform the functions of storage and/or a switch to produce components such as crossbars, multiplexers, look-up tables (LUTs) and other logic circuits used in programmable logic structures (e.g., (FPGAs)). The programmable, non-volatile memory elements comprise one or more structures based on Phase Change Memory, Programmable Metallization, Carbon Nano-Electromechanical (CNT-NEM), or Metal Nano-Electromechanical device technologies.
摘要:
Methods and arrangements are provided for significantly reducing electron trapping in semiconductor devices having a polysilicon feature and an overlying dielectric layer. The methods and arrangements employ a nitrogen-rich region within the polysilicon feature near the interface to the overlying dielectric layer. The methods include selectively implanting nitrogen ions through at least a portion of the overlying dielectric layer and into the polysilicon feature to form an initial nitrogen concentration profile within the polysilicon feature. Next, the temperature within the polysilicon feature is raised to an adequately high temperature, for example using rapid thermal anneal (RTA) techniques, which cause the initial nitrogen concentration profile to change due to the migration of the majority of the nitrogen towards either the interface with the overlying dielectric layer or the interface with an underlying layer. Consequently, the polysilicon feature has a first nitrogen-rich region near the interface to the overlying dielectric layer and a second nitrogen-rich region near the interface to the underlying layer. The migration of nitrogen further forms a contiguous reduced-nitrogen region located between the first nitrogen-rich region and the second nitrogen-rich region. The contiguous reduced-nitrogen region has a lower concentration of nitrogen than does the first nitrogen-rich region and the second nitrogen-rich region. The first nitrogen-rich region has been found to reduce electron trapping within the polysilicon feature. Thus, for example, in a non-volatile memory device wherein the polysilicon feature is a floating gate, false programming of the memory device can be significantly avoided by reducing the number of trapped electrons in the floating gate.
摘要:
To fabricate a semiconductor memory, one or more pairs of first structures are formed over a semiconductor substrate. Each first structure comprises (a) a plurality of floating gates of memory cells and (b) a first conductive line providing control gates for the memory cells. The control gates overlie the floating gates. Each pair of the first structures corresponds to a plurality of doped regions each of which provides a source/drain region to a memory cell having the floating and control gates in one or the structure and a source/drain region to a memory cell having floating and control gates in the other one of the structures. For each pair, a second conductive line is formed whose bottom surface extends between the two structures and physically contacts the corresponding first doped regions. In some embodiments, the first doped regions are separated by insulation trenches. The second conductive line may form a conductive plug at least partially filling the region between the two first structures.
摘要:
To fabricate a semiconductor memory, one or more pairs of first structures are formed over a semiconductor substrate. Each first structure comprises (a) a plurality of floating gates of memory cells and (b) a first conductive line providing control gates for the memory cells. The control gates overlie the floating gates. Each pair of the first structures corresponds to a plurality of doped regions each of which provides a source/drain region to a memory cell having the floating and control gates in one or the structure and a source/drain region to a memory cell having floating and control gates in the other one of the structures. For each pair, a second conductive line is formed whose bottom surface extends between the two structures and physically contacts the corresponding first doped regions. In some embodiments, the first doped regions are separated by insulation trenches. The second conductive line may form a conductive plug at least partially filling the region between the two first structures.
摘要:
In a nonvolatile memory, a floating gate includes a portion of a conductive layer (150), and also includes conductive spacers (610). The spacers increase the capacitive coupling between the floating gate and the control gate (170).
摘要:
A memory device having multiple banks, each bank having multiple memory cells and a method of programming multiple memory cells in the device wherein a bias voltage is applied to a common source terminal of the multiple memory cells and a time varying voltage is applied to gates of the memory cells that are to be programmed. In one embodiment, the voltage applied to the gates of the memory cells to be programmed is a ramp voltage. In a second embodiment, the voltage applied to the gates of the memory cells to be programmed is an increasing step voltage. In another embodiment, the bias voltage applied to the common source terminal and the voltage applied to the control gates of the memory cells to be programmed are selected so that the current flowing through cells being programmed is reduced and that the leakage current from memory cells that are not to be programmed is substantially eliminated. In another embodiment, a bias voltage is applied to the common source terminal and a bias voltage is applied to the common well voltage. The combination of the voltages applied to the control gates and to the sources decreases loading on the bitlines to ensure that VDS does not fall below a required level necessary for the maintenance of the hot carrier effect during programming. A bias voltage can also be applied to the wells of the memory cells while the common source terminal is held at ground. Feedback control of the programming gate voltages can be used to control the power required for programming.
摘要:
In this invention a process for a flash memory cell and an architecture for using the flash memory cell is disclosed to provide a nonvolatile memory having a high storage density. Adjacent columns of cells share the same source and the source line connecting these sources runs vertically in the memory layout, connecting to the sources of adjacent columns memory cells. Bit lines connect to drains of cells in adjacent columns and are laid out vertically, alternating with source lines in an every other column scheme. Wordlines made of a second layer of polysilicon form control gates of the flash memory cells and are continuous over the full width of a memory partition. Programming is done in a vertical page using hot electrons to inject charge onto the floating gates. the cells are erased using Fowler-Nordheim tunneling of electrons from the floating gate to the control gate by way of inter polysilicon oxide formed on the walls of the floating gates.