摘要:
In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.
摘要:
A magnetoresistance effect device comprises a magnetic multi-layer film having at least an antiferromagnetic film, a first ferromagnetic film, a non-magnetic film, and a second ferromagnetic film formed in the order on the front surface portion of the substrate, the magnetic multi-layer film having giant magnetoresistance effect, at least the second ferromagnetic film having a shape corresponding to a magnetic field detecting portion. The bias magnetic field applying films are disposed on a conductive film of the magnetic multi-layer film at outer portions of both edge portions of the magnetic field detecting portion of the magnetoresistance effective film. Alternatively, the second ferromagnetic film has a first portion corresponding to the magnetic field detecting portion and a second portion corresponding to the outer portions of both the edge portions of the magnetic field detecting portion, the film thickness-of the second portion being smaller than the film thickness of the first portion. The bias magnetic field applying films are formed at the outer portions of both the edge portions of the magnetic field detecting portion of the second ferromagnetic film. With the reversely structured magnetoresistance effect film and the laminate positions of the bias magnetic field applying films, in addition to suppressing the reproduction fringe and Barkhausen noise, the decrease of contact resistance, the suppression of insulation detect, and good linear response characteristic can be accomplished.
摘要:
A magnetoresistance effect head comprises a giant magnetoresistance effect film, a pair of leads to supply an electric current to the giant magnetoresistance effect head, and upper and lower magnetic shielding layers made of a crystalline soft magnetic film and disposed to hold the giant magnetoresistance effect film therebetween with a magnetic gap film intervened, wherein the surface roughness of an under layer of the giant magnetoresistance effect film is determined so that a center period L of the surface roughness satisfies L>70 nm.
摘要:
A magnetoresistance effect element includes a magnetoresistance effect film including a magnetically pinned layer having a magnetic material film whose direction of magnetization is pinned substantially in one direction, a magnetically free layer having a magnetic material film whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic metal intermediate layer located between said pinned layer and said free layer. The element also includes a pair of electrodes electrically connected to the magnetoresistance effect film to supply a sense current perpendicularly to a film plane of the magnetoresistance effect film. At least one of the pinned layer and the free layer may include a thin-film insertion layer. The nonmagnetic metal intermediate layer includes a resistance adjusting layer including at least one of oxides, nitrides and fluorides, and the thin-film insertion layer includes at least one element selected from the group consisting of iron (Fe), cobalt (Co) and nickel (Ni).
摘要:
A magnetoresistive device includes a magnetization pinned layer, a magnetization free layer, a nonmagnetic intermediate layer formed between the magnetization pinned layer and the magnetization free layer, and electrodes allowing a sense current to flow in a direction substantially perpendicular to the plane of the stack including the magnetization pinned layer, the nonmagnetic intermediate layer and the magnetization free layer. At least one of the magnetization pinned layer and the magnetization free layer is substantially formed of a binary or ternary alloy represented by the formula FeaCobNic (where a+b+c=100 at %, and a≦75 at %, b≦75 at %, and c≦63 at %), or formed of an alloy having a body-centered cubic crystal structure.
摘要翻译:磁阻装置包括磁化固定层,磁化自由层,形成在磁化固定层和磁化自由层之间的非磁性中间层,以及允许感测电流在基本垂直于堆叠平面的方向上流动的电极,包括 磁化钉扎层,非磁性中间层和无磁化层。 磁化固定层和无磁化层中的至少一个基本上由二元或三元合金形成,由二元或三元合金表示,其由式Fe / SUB>(其中a + b + c = 100at%,a≤75at%,b <= 75at%,c <= 63at%),或者由具有体心立方 晶体结构。
摘要:
A magnetoresistive element includes a pinned layer, free layer and non-magnetic spacer film between them. The pinned layer is made up of a first ferromagnetic metal layer, first non-metal layer on the first ferromagnetic metal layer, second non-metal layer on the first non-metal layer and different in composition from the first non-metal layer, and second ferromagnetic metal layer on the second non-metal layer. Thus, the magnetoresistive element, which may be used in a magnetic head of a magnetic recording apparatus, ensures a good bias property of the pinned film while maintaining a large MR changing rate of a specular spin valve structure, and it is simultaneously improved in soft magnetic property.
摘要:
A magneto-resistance effect element comprising a spin valve film including a first magnetic layer, a second magnetic layer and a non-magnetic layer interposed between the first magnetic layer and the second magnetic layer. Among the first and the second magnetic layers, in at least one of the magnetic layers, close-packed faces of crystal grains which constitute the magnetic layer are isotropically dispersed. Such a magnetic layer, by setting a film thickness of an under layer having an identical crystal structure with the magnetic layer at 2.0 nm or less and by dispersing isotropically close-packed faces of crystal grains constituting the under layer, can be obtained with reproducibility. According to a magneto-resistance effect element comprising such a spin valve film, while maintaining a large MR change rate, for example, magnetostriction constant can satisfy such a low magnetostriction as 1.times.10.sup.-6 or less. Further, excellent soft magnetic property can be provided.
摘要:
A magnetoresistive device includes a magnetization pinned layer, a magnetization free layer, a nonmagnetic intermediate layer formed between the magnetization pinned layer and the magnetization free layer, and electrodes allowing a sense current to flow in a direction substantially perpendicular to the plane of the stack including the magnetization pinned layer, the nonmagnetic intermediate layer and the magnetization free layer. At least one of the magnetization pinned layer and the magnetization free layer is substantially formed of a binary or ternary alloy represented by the formula FeaCobNic (where a+b+c=100 at %, and a≦75 at %, b≦75 at %, and c≦63 at %), or formed of an alloy having a body-centered cubic crystal structure.
摘要翻译:磁阻装置包括磁化固定层,磁化自由层,形成在磁化固定层和磁化自由层之间的非磁性中间层,以及允许感测电流在基本垂直于堆叠平面的方向上流动的电极,包括 磁化钉扎层,非磁性中间层和无磁化层。 磁化固定层和无磁化层中的至少一个基本上由二元或三元合金形成,由二元或三元合金表示,其由式Fe / SUB>(其中a + b + c = 100at%,a≤75at%,b <= 75at%,c <= 63at%),或者由具有体心立方 晶体结构。
摘要:
In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.
摘要:
A magnetoresistance effect element provided with a spin valve film composed of a first magnetic layer formed on a metallic buffer layer, a middle non-magnetic layer formed on the first magnetic layer, and a second magnetic layer formed on the non-magnetic layer, has an atomic-diffusion barrier layer whose average thickness is 2 nm or less formed in the interface between the metallic buffer layer and the first magnetic layer. Or a magnetoresistance effect element provided with a spin valve film composed of a first magnetic layer composed of a laminated film of a magnetic undercoat layer and a ferromagnetic layer, a middle non-magnetic layer formed on the first magnetic layer, and a second magnetic layer formed on the middle non-magnetic layer, has an atomic-diffusion barrier layer whose average thickness is 2 nm or less formed in the interface between the magnetic undercoat layer and the ferromagnetic layer.