Abstract:
One embodiment of the invention provides a compensation circuit. The compensation circuit comprises a writing driver, a distance detection circuit, an operating element and an auxiliary writing driver. The writing driver provides a writing current to a writing path. The distance detection circuit is coupled to the writing path to detect a distance that the writing current has travelled and outputs a control signal based on the distance. The operating element is coupled to the writing path. The auxiliary writing driver provides an auxiliary current to the writing path based on the control signal.
Abstract:
Phase change memory devices and fabrication methods thereof. A phase change memory device comprises a stacked heating element with a conductive portion and a relatively high resistive portion, wherein the relatively high resistive portion includes a nitrogen-containing metal silicide part. The heating stacked element such as a highly resistive nitrogen-containing metal silicide (MSixNy) is formed by a self-aligned silicidizing and nitrifying process. Self-aligned silicidization can be achieved by nitrogen ion implantation or nitrogen-containing plasma treatment. The resistance of the heating element can be regulated by adjusting the content of nitrogen or degree of nitrification.
Abstract translation:相变存储器件及其制造方法。 相变存储器件包括具有导电部分和相对较高电阻部分的堆叠加热元件,其中相对较高的电阻部分包括含氮金属硅化物部分。 通过自对准的硅化和硝化工艺形成诸如高阻值含氮金属硅化物(MSi x N N y)的加热层叠元件。 自对准硅化可以通过氮离子注入或含氮等离子体处理来实现。 可以通过调节氮的含量或硝化程度来调节加热元件的电阻。
Abstract:
A dynamic random access memory (DRAM) is provided. The dynamic random access memory includes a deep trench capacitor disposed in a first trench of a substrate, a conductive layer disposed in a second trench of the substrate, a gate structure, and a conductive layer disposed on the surface of the substrate at two sides of the gate structure. The depth of the second trench is smaller than the depth of the first trench, and the second trench partially overlaps with the first trench. The conductive layer disposed in the second trench is electrically connected with the conductive layer of the deep trench capacitor. The gate structure is disposed on the substrate. The conductive layer at one side of the gate structure is electrically connected with the conductive layer disposed in the second trench.
Abstract:
A dynamic fault detection method comprises the steps of acquiring a data curve from a machine, performing a waveform-recognition process to check if the data curve includes an effective waveform, performing a data-diagnosing process to check if the value of the effective waveform in an effective region falls outside a predetermined range, and generating an alarm signal if the value of the effective waveform in the effective region falls outside the predetermined range. The waveform-recognition process comprises the steps of checking if the data curve includes a first segment, a second segment and a third segment sandwiched between the first segment and the second segment, and checking if the length of the third segment is larger than a predetermined value. The waveform is determined to include the effective waveform if the checking results are true.
Abstract:
A method for preparing a trench capacitor structure first forms at least one trench in a substrate, and forms a capacitor structure in the bottom portion of the trench, wherein the capacitor structure includes a buried bottom electrode positioned on a lower outer surface of the trench, a first dielectric layer covering an inner surface of the bottom electrode and a top electrode positioned on the surface of the dielectric layer. Subsequently, a collar insulation layer is formed on the surface of the first dielectric layer above the top electrode, and a first conductive block is then formed in the collar insulation layer. A second conductive block with dopants is formed on the first conductive block, and a thermal treating process is performed to diffuse the dopants from the second conductive block into an upper portion of the semiconductor substrate to form a buried conductive region.
Abstract:
A method for improving atomic layer deposition (ALD) performance and an apparatus thereof are disclosed. The apparatus alternates the process temperature of the different ALD steps rapidly, and the process temperature of each step is determined in accordance with the specific precursor and the substrate surface used. In case a higher process temperature is needed, a plurality of heating units of the apparatus increases and keeps the temperature of the deposited substrate to complete surface reaction. When the lower process temperature is needful for the next ALD step, the heating units are turned off to reduce the temperature of the deposited substrate and a gas flow puffed to the heater and the deposited substrate to assist in temperature cooling.
Abstract:
A phase-change memory and fabrication method thereof. The phase-change memory comprises a transistor, and a phase-change material layer. In particular, the phase-change material layer is directly in contact with one electrical terminal of the transistor. Particularly, the transistor can be a field effect transistor or a bipolar junction transistor.
Abstract:
A dynamic random access memory (DRAM) is provided. The dynamic random access memory includes a deep trench capacitor disposed in a first trench of a substrate, a conductive layer disposed in a second trench of the substrate, a gate structure, and a conductive layer disposed on the surface of the substrate at two sides of the gate structure. The depth of the second trench is smaller than the depth of the first trench, and the second trench partially overlaps with the first trench. The conductive layer disposed in the second trench is electrically connected with the conductive layer of the deep trench capacitor. The gate structure is disposed on the substrate. The conductive layer at one side of the gate structure is electrically connected with the conductive layer disposed in the second trench.
Abstract:
A programming method for a phase change memory based on the phase transformations between amorphous and crystalline phases is disclosed. The programming method comprises a current pulse with step waveform providing a first crystallization current pulse to the phase change memory and providing a second crystallization current pulse to the phase change memory. The first crystallization current pulse has a first rising edge, a first falling edge and a first peak current held for a first hold time. The second crystallization current pulse has a second peak current. The second peak current follows the first falling edge and is held for a second hold time.
Abstract:
A method for fabricating a gate structure is provided. A pad oxide layer, a pad conductive layer and a dielectric layer are sequentially formed over a substrate. A portion of the dielectric layer is removed to form an opening exposing a portion of the pad conductive layer. A liner conductive layer is formed to cover the dielectric layer and the pad conductive layer. A portion of the liner conductive layer and a portion of the pad conductive layer are removed to expose a surface of the pad oxide layer to form a conductive spacer. The pad oxide layer is removed and a gate oxide layer is formed over the substrate. A first gate conductive layer and a second gate conductive layer are sequentially formed over the gate oxide layer. A portion of the gate oxide layer is removed and a cap layer to fill the opening.