摘要:
Methods and apparatus employing membrane filtration in biodegradation processes for treatment of wastewater are described. A bioreactor system is described having an equalization system, a membrane bioreactor system, and a controller. Aeration systems for a membrane bioreactor, such as a mixer, and an ultrafilter subsystem are also described, as is a rotary membrane ultrafilter.
摘要:
A filtration apparatus includes a container (24) that surrounds at least one rapidly rotating membrane pack (32, FIG. 2) and stationary turbulators (36A, 36B ) slightly spaced from the membrane pack surfaces to leave thin gaps (40A, 40B ) between them, which obtains the advantages of both series-connected and parallel-connected systems. A feed conduit (82) connects the radially outer ends (110) of the gaps, to carry feed fluid into and out of each gap, with radially outward flow (94) near the pack surfaces, causing radially inward flow (102) near the surfaces of the turbulators. The turbulators have recesses that leave projections to promote fluid shear at the membrane surfaces. A motor shaft (314) supported on motor bearings, has a motor housing fixed to the container. The motor shaft extends into the container and holds the membrane pack to spin it, so only the motor bearings (316, 318) support all rotating parts. The motor shaft has a passage (340) extending along its length to carry out filtrate from the membrane pack.
摘要:
Salt water and other solutions are accelerated in a rotating structure and applied to a cannister containing reverse osmosis membrane material. The desalinated water is removed after passing through the large surface area concentration of membrane material in the cannister. The enriched brine is removed from the cannister at a point furthest from the axis of the rotating structure and returned to the vicinity of the axis to prevent the buildup of dense material. The membrane material is configured in the cannister so that the flow is generally radially with respect to the axis of the rotating structure.
摘要:
A dialyzer and a dialysis system particularly adapted to fast dialysis and avoidance of contamination or spillage. Adjustable upper and lower clamp units are provided on a central shaft. Means are provided to securely mount a plurality of dialysis bags around the entire periphery of the clamping units and to provide adequate bath circulation through the relatively confined core volume. The individual dialysis bag may be accurately filled or emptied while in a fully installed position on the dialyzer. The circulating pump is a pair of openings in the bottom clamp unit. The top of each bag is always open to receive a syringe needle. The rotating motor is isolated from the bath.
摘要:
AN OXYGENATOR PRIMARILY FOR HUMAN BLOOD HAS A FIRST STATIONARY UNIT WITH A FIRST SUBSTANTIALLY FLAT WALL AND A SECOND MOVABLE UNIT WITH A SECOND SUBSTANTIALLY FLAT WALL FACING THE FIRST WALL. ON THEIR FACING SIDES BOTH WALLS HAVE SUPPORTS HIGHLY PERMEABLE TO GAS. THE SUPPORTS ARE COVERED BY GAS PERMEABLE, HYDROPHOBIC MEMBRANCES BETWEEN THEM DEFINING A PASSAGE FOR LIQUID. SEVERAL OF THE FIRST UNITS AND SECOND UNITS ARE SANWICHED TO MAKE THE PASSAGE LONG AND TORTUOUS OR SINUOUS. BLOOD FLOWING THROUGH THE PASSAGE IS PERFUSED BY OXYGEN FLOWING IN THROUGH THE PERMEABLE SUPPORTS AND THE MEMBRANES AND GIVES UP CARBON DIOXIDE FLOWING OUT THROUGH THE MEMBRANES AND SUPPORTS. THE GAS TRANSPORT INTO AND OUT OF THE BLOOD IS ENHANCED BY ROTATING THE UNITS RELATIVE TO EACH OTHER. THIS PRODUCES FAIRLY REGULAR VORTICAL MOTION OF THE BLOOD AND REDUCES THE THICKNESS OF THE BOUNDARY LAYER OF THE BLOOD.
摘要:
The present invention relates to a filtration device comprising:
at least one enclosure (1; 1A, 1B; 1A, 1B, 1C, 1D) defining a longitudinal axis, said enclosure being obstructed at each end by at least one sealing plate (2A, 2B; 2C, 2D), at least one filtration disc (4) that is rotated and at least one spacer (10) placed between each filtration disc (4), said spacer (10) defining an inter-disc space (10A), at least one hollow rotation shaft (3; 3A) that rotates said at least one filtration disc (4), said shaft having at least one port (33) adapted to collect filtrate (11A, 11B), said filtration disc (4) and said spacer (10) being arranged on said at least one rotation shaft (3; 3A, 3B) inside said enclosure (1; 1A, 1B; 1A, 1B, 1C, 1D), characterised in that said enclosure (1; 1A, 1B; 1A, 1B, 1C, 1D) is passed through by said at least one rotation shaft (3; 3A), and said rotation shaft (3; 3A) is driven by at least one separate rotation means (5, 5A, 5B, 5C) on at least one of the ends of said shaft, said rotation means and said rotation shaft being coaxial, and in that the device comprises at least two separate discharge means (13A, 13B) for the filtrate (11A, 11B), said discharge means being located on said rotation shaft outside said enclosure.
摘要:
The present invention relates, in part, to methods, systems and processes for large-scale purification of mRNA using a filtering centrifuge operating at lower gravitational forces. The invention also relates to compositions of purified mRNA and uses thereof.
摘要:
The present invention relates to a filtration device comprising:
at least one enclosure (1; 1A, 1B; 1A, 1B, 1C, 1D) defining a longitudinal axis, said enclosure being obstructed at each end by at least one sealing plate (2A, 2B; 2C, 2D), at least one filtration disc (4) that is rotated and at least one spacer (10) placed between each filtration disc (4), said spacer (10) defining an inter-disc space (10A), at least one hollow rotation shaft (3; 3A) that rotates said at least one filtration disc (4), said shaft having at least one port (33) adapted to collect filtrate (11A, 11B), said filtration disc (4) and said spacer (10) being arranged on said at least one rotation shaft (3; 3A, 3B) inside said enclosure (1; 1A, 1B; 1A, 1B, 1C , 1D), characterised in that said enclosure (1; 1A, 1B; 1A, 1B, 1C, 1D) is passed through by said at least one rotation shaft (3; 3A), and said rotation shaft (3; 3A) is driven by at least one separate rotation means (5, 5A, 5B, 5C) on at least one of the ends of said shaft, said rotation means and said rotation shaft being coaxial,
and in that the device comprises at least two separate discharge means (13A, 13B) for the filtrate (11A, 11B), said discharge means being located on said rotation shaft outside said enclosure.