Abstract:
A tool for forming a desired pattern on a polishing pad establishes a vibration that is coupled to the polishing pad. The vibration removes small portions of the polishing pad according to the desired pattern. The polishing pad is then used in a chemical mechanical polishing (CMP) step to polish a layer on a semiconductor device.
Abstract:
The invention relates to a method and an apparatus for the surface blasting, especially for the ultrasonic shot peening, of gas turbine blades in the area of their blade roots. The apparatus encompasses at least one vibrator, especially at least one ultrasonic sonotrode (12), comprising an oscillating surface (13), whereby the or each vibrator is oriented in such a manner so that the oscillating surface (13) of the or each vibrator extends essentially in the horizontal direction, whereby a processing chamber (14), for receiving the or each blade root (15) to be processed, adjoins the or each oscillating surface (13). According to the invention, the processing chamber (14) is embodied in such a manner so that the or each gas turbine blade (11) is orientable in such a manner for the surface blasting so that during the blasting at least one profiled support surface, which is to be processed, of the or each blade root (15) extends at least temporarily essentially parallel to the oscillating surface (13) of the or each vibrator, especially the or each ultrasonic sonotrode.
Abstract:
Chemical mechanical polishing (CMP) devices, a pad conditioner assembly and a polishing pad conditioning method thereof are provided. The CMP device planarizes a wafer by rotating a carrier, which has a wafer mounted on a lower surface of the carrier, over a rotating polishing table while supplying a slurry onto a polishing pad attached to an upper surface of the rotating polishing table. The CMP device may include a pad conditioner assembly that conditions the polishing pad by supplying a pad conditioning liquid onto the polishing pad and simultaneously transferring a megasonic vibration to the pad conditioning liquid to remove foreign substances from a surface of the polishing pad.
Abstract:
The invention provides a cutting method and a cutting apparatus that cuts without chipping a composite material consisting of laminated layers of crystal material and amorphous material, in which the amorphous material is cut with an ultrasonically vibrated cutting blade and the crystal material is cut with a cutting blade that does not ultrasonically vibrate. With such a method and apparatus, the crystal material portion and the amorphous material portion of the composite material can be cut cleanly without chipping.
Abstract:
Pinion gears for planetary gear transmissions are hobbed, heat treated, and then ground to get better control of the leads/profiles on all the gear teeth. Then a light shot peening is applied to the tooth flanks to achieve the desired compressive residual stresses on the tooth surface. By applying the process in the controlled manner specified, the surface is not over-cold worked. Next, a chemically assisted isotropic surface treatment is applied over the pinion gears to improve the surface finish on the gear teeth. For low speed applications the surface finish improves the lambda ratio, allowing for a good oil film thickness on the surface of the gear teeth.
Abstract:
Planarizing machines and methods for mechanical and/or chemical-mechanical planarization of micro-device workpieces are disclosed herein. In one embodiment, a method for polishing a workpiece includes determining an estimated frequency of serial defects in a workpiece, pressing the workpiece against a polishing pad and moving the workpiece relative to the pad. The method further includes vibrating the workpiece and/or the pad at a frequency that is greater than the estimated frequency of the serial defects. In one aspect of this embodiment, determining the estimated frequency of serial defects can include: determining a relative velocity between the workpiece and the polishing pad; estimating the length of a mark on the workpiece; estimating the time a particle in a planarizing solution is in contact with the workpiece; and estimating the number of cracks in the workpiece.
Abstract:
A cutting disc blade having a center hole is equipped with a ultrasonic transducer in the form of ring which is coaxially fixed onto one or both surfaces of the disc blade, to give a cutting tool which can be efficiently vibrated with ultrasonic wave.
Abstract:
A method of forming fluid handling slots in a semiconductor substrate having a thickness defined by a first side and a second side is provided. The method comprises ultrasonic grinding, utilizing an abrasive material, into the semiconductor substrate from a first side to form a first trench, and removing semiconductor substrate material from the backside to form a second trench, wherein at least a portion of the first and second trenches intersect to form a feature through the semiconductor substrate.
Abstract:
Systems and methods for monitoring characteristics of a polishing pad used in polishing a micro-device workpiece are disclosed herein. In one embodiment, a method for monitoring a characteristic of a polishing pad includes applying ultrasonic energy to the polishing pad and determining a status of the characteristic based on a measurement of the ultrasonic energy applied to the polishing pad. In one aspect of this embodiment, applying ultrasonic energy includes applying ultrasonic energy from a transducer. The transducer can be carried by a conditioner, a fluid arm, a micro-device workpiece carrier, or a table. In another aspect of this embodiment, determining the status of the characteristic includes determining a thickness, density, surface contour, roughness, or texture of the polishing pad.
Abstract:
A method of polishing metal and barrier layer interconnect integrated with an extremely low dielectric constant material includes steps of (A) preparing a wafer composed of a copper layer and the extremely low dielectric constant material, (B) treating the copper layer chemically to produce a hard and brittle surface residual formed on the surface of the copper layer, (C) keeping polishing the surface residual by ultrasonic waves, (D) polishing a barrier layer of wafer by the ultrasonic waves, thereby polishing the wafer successfully.