Abstract:
The present invention provides a porous resinous oil-retaining article, containing lubricating oil, which is excellent in the utilization efficiency of the lubricating oil, has a high mechanical strength, and further allows the resin and the lubricating oil to be combined with each other according to a use and a specification. The present invention also provides a method of producing the resinous oil-retaining article. The resinous oil-retaining article comprises a resinous porous article having interconnected holes which are open to a surface of the resinous porous article; and an oil impregnated into the resinous porous article. The interconnected holes are formed by molding a resin containing a pore-forming substance into a molding and extracting a part of the pore-forming substance from the molding with a solvent which dissolves the pore-forming substance and does not dissolve the resin. An interconnected hole porosity of the resinous porous article is not more than 30%.
Abstract:
The present invention is a method of producing porous beads, which comprises the steps of providing a first liquid phase comprising a bead matrix material and essentially edgy templating particle(s), said particle(s) being treated with a surface modifying agent; providing a second liquid phase which is immiscible with the first liquid phase; contacting the first phase and the second phase under conditions resulting in an emulsion of droplets comprised of the first liquid phase dispersed in the continuous second liquid phase; transforming the droplets to mesoporous beads by solidification of the liquid; and removing the templating particle(s) from the beads without causing any essential change of the surrounding bead, whereby hierarchical networks of pores are provided in the beads.
Abstract:
A medical prosthesis includes a body having a silicone skin and a silicone foam body core. The skin and foam body core are both resilient. The core includes a plurality of voids and a plurality of discontinuities. Some of the discontinuities communicate with more than one void.
Abstract:
A foam material is provided that is formed from a body of silicone having a cellular structure formed by a plurality of interconnected voids. The voids have a relatively high volume of between about 0.06545 to about 268.0832 mm3 and more typically about 65.45 to about 179.5948 mm3. The foam material displays unique tactile properties.
Abstract:
Provided herein are methods for fabricating a porous polymer material, methods for revealing hidden anti-counterfeiting patterns, chromogenic sensors having hidden anti-counterfeiting patterns, and the like. Chromogenic sensors including porous polymer materials are provided. The chromogenic sensors can reveal hidden patterns such as anti-counterfeiting patterns and the pattern can be re-hidden.
Abstract:
Provided are a porous film having excellent surface smoothness and a method for producing the same. The surface roughness of a porous film of polyvinylidene fluoride, polyethersulfone, polyimide and/or polyamide-imide is Ra 30,000 Å or less. The opening diameter of the porous film is preferably from 100 nm to 5000 nm. The method for producing a porous film preferably includes a step for kneading a varnish containing fine particles and at least one resin selected from the group consisting of polyvinylidene fluoride, polyether sulfone, polyamic acid, polyimide, polyamide-imide precursor, and polyamide-imide. The varnish preferably has a viscosity at 25° C. of 0.1-3 Pa·s, a solids fraction concentration of 10-50 mass %, and a fine particle average particle size of 10-5000 nm.
Abstract:
The present invention relates to a method for preparing a nerve conduit containing cells, more particularly to a method for preparing a porous nerve conduit containing cells, having micropores formed in microchannels, wherein the nerve conduit containing cells prepared according to the present invention can be usefully used in in-vitro and in-vivo researches on nerves.
Abstract:
A thermoplastic sulfur-polymer composite comprises a thermoplastic polymer, such as polyethylene and polystyrene; and a sulfur element. Such sulfur element functions as passive sulfur filler in this composite. The thermoplastic polymer is a polymer matrix; and the sulfur filler is dispersed in the polymer matrix. There is no chemical reaction occurs after the addition of the sulfur filler into the host polymer and no chemical bond formed between the polymer and the sulfur filler. The thermoplastic sulfur-polymer composite can be a nanocomposite by either adding certain nanofillers into the composite or making the sulfur filler as sulfur nanoparticles. With its similar physical properties and lower manufacturing costs, the thermoplastic sulfur-polymer composites are good alternatives of the respective pure polymers.
Abstract:
A porous, resorbable and flexible dental surgical membrane (16) is made from chitosan having a viscosity average molecular weight of about 400,000 daltons up to about 2,000,000 daltons and has a thickness of from about 100 microns to about 0.5 mm. The membrane is easily insertable over a bone graft material site to confine the bone graft material (14) while allowing access to the bone graft material of blood and oxygen and applied medicaments through the membrane. The high molecular weight of the chitosan may be chosen so that the membrane will not dissolve or resorb in a human mouth for a protracted period, e.g., from about 12 to about 16 weeks. The membrane is made by dissolving medical grade chitosan in aqueous acetic acid, dispersing fine silica particles into the solution to form a slurry, depositing a film of the slurry on a support surface, evaporating liquid from the slurry sufficiently to form a coherent chitosan membrane having silica particles dispersed therein, and then dissolving the silica particles with a sodium hydroxide solution followed by a water wash to form the porous chitosan membrane.
Abstract:
A method of controlling a flow of fluid comprises providing a porous article, the porous article comprising a fluoropolymer and a plurality of pores formed by removing a removable additive, a portion of the pores being connected and establishing fluid flow paths through the article; flowing a fluid through the plurality of pores of the porous article; the fluid comprising a first component having a surface energy less than 40 milliNewton per meter at 25° C. and a second component having a surface energy greater than 40 mN/m at 25° C.; wherein the fluoropolymer is selected such that the first component of the fluid has a better wettability with the fluoropolymer than the second component of the fluid.