Abstract:
A steel cord (30) with a high elongation at break of at least 5% comprises n strands (20), each of said strands (20) has m filaments (10) twisted together, n ranges from 2 to 7. m ranges from 2 to 9. The strands and the filaments are twisted in a same direction. The lay length of the cord is Lc and the lay length of said strand is Ls. The ratio of Ls to Lc (Ls/Lc) ranges from 0.25 to 1. Lc ranges from 16 mm to 26 mm. The strands are helically preformed. The E-modulus of the cord is more than 150000 N/mm2. The helical preforming of the strands allows to obtain a high elongation at break and a high E-modulus despite its long lay length Lc.
Abstract:
A pneumatic tire for a passenger car includes a belt layer and a belt cover layer formed by winding a steel cord member in the tire circumference direction on the outer peripheral side of the belt layer. The steel cord member has a structure in which element wires made of steel and having a diameter smaller than 0.18 mm are twisted together to form each strand and the strands are twisted together in the same direction as the direction of twisting of the element wires. The twist pitch on each of the strands is smaller than the twist pitch on the steel cord member, the twist pitch on the strand is 1.0 mm to 2.1 mm, and the twist pitch on the steel cord member is 2.0 mm to 5.25 mm.
Abstract:
An annular metal cord includes an annular core portion and an outer layer portion. The annular core portion is formed by connecting together both ends of a first strand material which is made up of six twisted first metal filaments. The outer layer portion is formed by winding spirally a second strand material which is made up of six twisted second metal filaments around the annular core portion. The second strand material is wound at a predetermined winding angle relative to a center axis of the annular core portion, and a winding initiating end portion and a winding terminating end portion are connected together. As a result, the breaking strength of the annular metal cord can be made large, and the production thereof can be facilitated.
Abstract:
Provided are a steel cord for reinforcing rubber whose fatigue resistance is increased more than ever to enable achieving high durability that was not conventionally realized, and a pneumatic radial tire including the steel cord as a reinforcement member.In a steel cord for reinforcing rubber having a double-twist structure that includes a plurality of strands twisted together in the same direction with the same pitch and including a central structure and at least one outer layer, the central structure is composed of at least two strands being twisted around each other and each being composed of at least seven filaments being twisted together. In a steel cord for reinforcing rubber including at least three core strands being twisted together and at least six sheath strands being twisted together around the core strands, the core strands and the sheath strands are twisted in the same direction.
Abstract:
An elongation cord adapted for the reinforcement of elastomer structures has a polymer core and three to nine strands twisted around the core with a cord twisting step in a cord twisting direction. At least one of the strands a first group of filaments and a second group of filaments. The first group of filaments is twisted with a first twisting step in a first twisting direction and the second group of filaments is twisted with a twisting step in a second twisting direction. The first twisting step is different from the second twisting step or the first twisting direction is different from the second twisting direction, or both. The first twisting direction is equal to the cord twisting direction and the first twisting step is equal to the cord twisting step.
Abstract:
An elongation cord (10) adapted for the reinforcement of elastomer structures has a polymer core (12) and three to nine strands (14) twisted around the core with a cord twisting step in a cord twisting direction. At least one of the strands (14) has a first group (16) of filaments (17, 18) and a second group (20) of filaments (21, 22). The first group (16) of filaments (17, 18) is twisted with a first twisting step in a first twisting direction and the second group (20) of filaments (21, 22) is twisted with a second twisting step in a second twisting direction. The first twisting step is different from the second twisting step or the first twisting direction is different from the second twisting direction, or both. The first twisting direction is equal to the cord twisting direction and the first twisting step is equal to the cord twisting step.
Abstract:
A synthetic rope for an elevator having improved resistance to compression and abrasion is provided and comprises a plurality of strands forming layers of the rope, each strand formed from a plurality of pre-twisted strands made from high modulus synthetic filaments. One or more of the strands or layers of strands may be impregnated with a lubricant, such as polytetrafluoroethylene, to reduce the abrasion among the strands and substrands, and increase the service life of the rope. The exterior of the rope may be covered by a jacket that provides for traction with the drive sheave. An elevator system comprising the claimed rope is also provided.
Abstract:
A rope has a rope core formed of load-bearing aramide fiber strands laid parallel to each other in concentric layers of strands and strands of an outermost layer laid with opposite lay to the rope core. As a result of the opposite lay, the torques which occur in the layers of strands when under load cancel each other out and a non-twisting rope structure is achieved. An elastic intersheath is positioned between the oppositely laid layers of strands to protect the strands against abrasion and to transmit the torque over a wide area in the rope.
Abstract:
A steel wire cord which comprises an assembly of strands each of which comprises a plurality of filaments of steel, said filaments having been drawn to give a reduction in their cross-sectional area of less than 96%, the strand helix angle being not less than 40.degree. and the filament helix angle being not less than 20.degree..