Abstract:
A fuel diluting quantity is estimated based on an alcohol concentration of the fuel. A response-deterioration determination value is corrected according to the estimated fuel diluting quantity. The response-deterioration determination value can be properly established even though the responsiveness of the variable valve timing controller is varied due to a variation in viscosity of the lubricant. Thereby, even when the responsiveness of the variable valve timing controller is varied (deteriorated) due to an increase in the fuel diluting quantity, it can be avoided that the computer determines that the variable valve timing controller has a defect.
Abstract:
In a variable valve timing control apparatus, a hydraulic variable valve timing device adjusts valve timing by changing a VCT phase. In a lock mode, the lock pin is allowed to be displaced in a lock direction for locking the VCT phase, and the VCT phase is slightly shifted in a lock-mode VCT phase shift direction corresponding to one of an advance direction and a retard direction. A lock control unit shifts the VCT phase in a direction opposite from the VCT phase shift direction if the VCT phase is located on a lock-mode VCT phase shift direction side of the intermediate lock position when the engine becomes equal to or less than a first rotational speed, and otherwise the lock control unit allows the lock pin to be displaced in the lock direction.
Abstract:
A method and control module includes a control hold duty cycle module generating a control hold duty cycle signal and a voltage correction module generating a voltage correction signal. The control module also includes a correction module generating a corrected proportional correction signal based on a proportional correction signal and the voltage correction signal, and generating a corrected integral correction signal based on an integral correction signal and the voltage correction signal. The control module also includes a force determination module controlling a duty cycle to a phaser operator based upon the control hold signal, the corrected proportional correction signal and the corrected integral correction signal.
Abstract:
The valve timing controller for the internal combustion engine determines, based on a control parameter during phase angle feedback control, whether or not the valve timing variable mechanism is pressed against a limiting position defined by a stopper, sets a second target phase angle on a reference rotational phase angle value side of the camshaft by a first predetermined value from a detected real phase angle value of the camshaft when the stopper pressing determination means determines that the valve timing variable mechanism is pressed against the limiting position defined by the stopper, and switches a target phase angle during the phase angle feedback control from the first target phase angle to the second target phase angle.
Abstract:
A method may include commanding operation of an engine in a first lift mode. The engine may include a valve lifter system that selectively operates a valve member in the first lift mode and a second lift mode through engagement with a camshaft. A first duty cycle of a cam phaser oil control valve (OCV) may be determined to maintain a first camshaft position corresponding to the first lift mode. The camshaft position may be maintained by a cam phaser that is coupled to the camshaft and in communication with the cam phaser OCV. Engine operation may be commanded to the second lift mode and a second duty cycle of the cam phaser OCV may be determined to maintain a second camshaft position corresponding to the second lift mode. A valve lifter system failure may be diagnosed based on a difference between the first and second duty cycles.
Abstract:
A method may include commanding operation of an engine in a first lift mode. The engine may include a valve lifter system that selectively operates a valve member in the first lift mode and a second lift mode through engagement with a camshaft. A first duty cycle of a cam phaser oil control valve (OCV) may be determined to maintain a first camshaft position corresponding to the first lift mode. The camshaft position may be maintained by a cam phaser that is coupled to the camshaft and in communication with the cam phaser OCV. Engine operation may be commanded to the second lift mode and a second duty cycle of the cam phaser OCV may be determined to maintain a second camshaft position corresponding to the second lift mode. A valve lifter system failure may be diagnosed based on a difference between the first and second duty cycles.
Abstract:
The present invention relates to a method for controlling lubrication of a connecting rod bearing of an internal combustion engine arrangement. The method comprises the steps of controlling an inlet valve to be maintained in the closed position during a movement of the reciprocating piston from the top dead center during an intake stroke for a predetermined number of crank angle degrees; and positioning the inlet valve in the open position when the reciprocating piston has traveled the predetermined number of crank angle degrees from the top dead center, wherein lubricating medium is provided to the connecting rod bearing within a predetermined time period before the inlet valve is arranged in the open position.
Abstract:
A method for cleaning a continuously variable valve timing (CVVT) system for removing foreign materials includes: switching a target operating value of the CVVT system to a predetermined setting value within a set operating region and performing cleaning of the CVVT system; and determining whether a valve timing control learning request exists for the CVVT system, and, when the valve timing control learning request exists, aborting the cleaning.
Abstract:
Methods and systems are described for an engine with a cam torque actuated variable cam timing phaser. Phaser positioning control is improved by reducing inaccuracies resulting from inadvertent spool valve and/or phaser movement when the spool valve is commanded between regions. In addition, improved spool valve mapping is used to render phaser commands more consistent and robust.
Abstract:
A controller for a variable valve device of an internal combustion engine includes a hydraulic valve timing changing mechanism that changes the valve timing VT of an intake valve, a valve timing locking mechanism that locks the valve timing VT to an intermediate phase, and an electronic controller that controls the operation of the valve timing changing mechanism. The electronic controller limits the variable range of the valve timing VT in accordance with the composition of hydraulic oil, when the operational state of the valve timing changing mechanism is a phase-unlocked state in which the valve timing VT can be changed.