Abstract:
In the present invention, a control apparatus for an internal combustion engine detects an amount of particulate matter contained in an exhaust gas in an exhaust passage, according to an electrical property across electrodes of a particulate matter sensor disposed in the exhaust passage of the internal combustion engine. The term “electrical property” here refers to a property that changes with the amount of particulate matter deposited, for example, a current value of when a predetermined voltage is applied. After the internal combustion engine is started and detection of the amount of the particulate matter is completed, an element section of the particulate matter sensor is set to a predetermined temperature range. The particulate matter deposited on the element section is thereby burned and removed. Further, the control apparatus for an internal combustion engine maintains the element section in the predetermined temperature range after burning and removing the particulate matter until the internal combustion engine stops. The element section can be free from the particulate matter deposition after the particulate matter is burned and removed. The particulate matter can thus be immediately detected in the start of the next operation of the internal combustion engine.
Abstract:
An engine control apparatus for a hybrid vehicle is provided with a conversion angle detecting device, an angle determining device, an engine load calculating device and an engine control device. The conversion angle detecting device detects a rotational phase of a cam with respect to a crankshaft as a detected conversion angle of a variable valve operating mechanism of an engine. The angle determining device determines if the detected conversion angle is different from a starting conversion angle when the engine is started. The engine load calculating device calculates a requested load to be imposed on the engine based on the detected conversion angle if the detected conversion angle is different from to the starting conversion angle at a time the engine is started. The engine control device controls the engine in accordance with the requested engine load that was calculated.
Abstract:
The invention has an object to provide a device for determining activation of an exhaust gas sensor which accurately determines a time at which an exhaust gas sensor output is usable, and can suppress an adverse effect caused by use of the exhaust gas sensor output including a large effect of adsorbed species. A time is measured from a time point when a temperature of an air-fuel ratio sensor 48 reaches a predetermined temperature T1, while the air-fuel ratio sensor 48 is warmed up. When the time becomes a predetermined target holding time Te or more, the air-fuel ratio sensor 48 is determined as being in an activation state. The target holding time Te is preferably set at such a length that all adsorbed species adsorbed onto the air-fuel ratio sensor 48 are desorbed, and areas around a sensor element section 50 are completely replaced with an exhaust gas.
Abstract:
In a method for operating a lambda sensor disposed in an exhaust gas system of an internal combustion engine,—the heating element is subjected to a predefined heating power substantially with the start of the engine;—during the heating process, the sensor signal is detected and compared to a threshold value specified for a lean and/or rich fuel/air mixture ratio, wherein the threshold value correlates with a sensor temperature, which is below the water ingestion critical temperature, and to a valid lambda signal,—when one of the specified threshold values is reached for the first time, a measured variable correlating with the sensor temperature is determined and the lambda signal is set as valid and forwarded, and—the determined measured variable correlating with the sensor temperature is transferred to a closed heating element control loop as a target value that corresponds to a target temperature.
Abstract:
A fuel injection control device for a multi-fuel engine includes a corrector and a reviewer. An alcohol concentration learning unit is provided to learn an alcohol concentration in an injected fuel based on an oxygen concentration detected in an exhaust gas. A fuel injection amount controller is provided to control a fuel injection amount based on a learning value corresponding to the oxygen concentration. The corrector is configured to reduce the fuel injection amount corresponding to the learning value for a predetermined time period when the learning value is higher than a threshold value when an engine is started. The reviewer is configured to review the learning value to provide a revised learning value based on the oxygen concentration while the corrector reduces the fuel injection amount. The fuel injection amount is controlled based on the revised learning value after the corrector reduces the fuel injection amount.
Abstract:
When an engine is at starting or at cold state, a closing time of an exhaust valve is set before an intake top dead center to close the exhaust valve early. An exhaust residual gas is compressed by a cylinder to raise an inner cylinder temperature. A pre-fuel injection is performed from a time of closing the exhaust valve to a time of the intake top dead center in such a manner that the pre-injected fuel is combusted to raise the inner cylinder temperature. This increase in temperature expedites an atomization of fuel injected at a main fuel injection. A wet amount of fuel is reduced and HC emission is also reduced.
Abstract:
An engine control system for an internal combustion engine with a fuel injector, comprises a combustion fuel quantity computing means for computing a combustion fuel quantity in a combustion cycle; and a residual fuel quantity computing means for computing a residual fuel quantity in the combustion cycle based on a difference between an injection fuel quantity of the fuel injector and the combustion fuel quantity.
Abstract:
An engine system and a method of starting an internal combustion engine of the engine system are described. In one embodiment, the method includes adjusting a fuel pressure within a fuel rail to exceed a pressure of a pressure relief valve. The method may be particularly useful during degradation of a fuel pressure sensor.
Abstract:
A gas engine has a starting operation mode in which fuel gas flow is controlled based on actual mixture flow rate and adequate excess air ratio prescribed for each of detected values of operating conditions of the engine and then mixture flow is controlled so that engine rotation speed approaches a target rotation speed, and a normal operation mode in which fuel gas flow is controlled so that engine rotation speed approaches the target rotation speed and then mixture flow rate is controlled so that air fuel ratio of the mixture coincides with an adequate value prescribed for each of detected values of operating conditions of the gas engine with the fuel gas flow flowing at the commanded fuel gas flow rate, and a switchover rotation speed is predetermined so that operation mode is switched from starting mode to normal mode when engine speed reaches the switchover rotation speed.
Abstract:
In a method for cold-running or warm-up operation of a spark-ignition, direct-injection 4-stroke internal combustion engine having an exhaust gas catalytic converter, wherein fuel is injected into the cylinders of the internal combustion engine by means of injectors and is externally ignited by means of spark plugs, in an intake stroke fuel injection a lean, combustible but non-ignitable lean mixture is produced in the cylinders, in a compression stroke fuel injection following the intake stroke injection, by a compression stroke fuel injection, a combustible and ignitable fuel/air mixture is formed in the combustible but non-ignitable lean mixture in the cylinders and, subsequently, in a stratified fuel injection which is close in timing to an ignition time, a rich fuel/air mixture is locally formed in the region of the spark plug and is then ignited by the spark plug so as to provide for rapid heat up of the cold exhaust gas catalytic converter with reliable combustion and smooth engine operation.