Abstract:
A communications system for transmitting and receiving remote control messages in an electronic remote control system. The present communications system uses a remote control message protocol which is particularly suitable for transmitting RF remote control messages with IR remote control messages in a time multiplexed fashion, wherein the RF remote control messages are transmitted during the pause intervals between IR remote control message transmission intervals. The present remote control message protocol includes a start sequence, comprising a MARK pulse and a SPACE of about equal duration, followed by a plurality of data fields. Each data field ends with an End of Field marker and the remote control message ends with an End of Message marker. The plurality of data fields comprises an addressing data field for specifying the destination device, a security code data field for allowing a specific remote control transmitter to control a specific destination device, a status field for specifying various status codes associated with the remote control message, a keycode field for carrying the remote control message payload, and a checksum field for verifying the transmission integrity of the remote control message. A remote control message based on the present message protocol may be expanded to include additional data fields and to expand pre-existing data fields.
Abstract:
A redundant remote control system for use on a continuous miner having a radio remote control system for the remote control of a continuous miner. The radio remote control system having switches, a multiplexer, a radio transmitter, a radio receiver, a demultiplexer, and a radio interface. The redundant remote control system includes a second system for controlling the same continuous miner, and includes a second transmitter, a second multiplexer, a second receiver, and a second demultiplexer. The second system may be a radio, a fiber optic or electrical cable remote control system.
Abstract:
The invention relates to a method for configuring the communication between at least one actuator and a remote control, in order to enable a control of the at least one actuator by the remote control, the at least one actuator being configured to communicate with the remote control, the communication between the at least one actuator and the remote control being established according to a first protocol or according to a second protocol, the communication according to the second protocol being implemented via a connection to a router connected to the mains, the method being implemented by a mobile terminal, the mobile terminal being configured to communicate according to the first protocol with the at least one actuator, and with the remote control, the mobile terminal being configured to communicate with the router according to the first protocol or according to a third protocol, the method comprising the following steps: —identifying an identifier of the at least one actuator, —identifying an identifier of the remote control, —analysing in order to detect a presence or absence of the router, —if the absence of the router is detected by the mobile terminal during the analysis step, transmitting, to the remote control, the identifier of the at least one actuator and/or transmitting, to the actuator, the identifier of the remote control, then transmitting, to the remote control and to the actuator, a request to deactivate the first protocol, if the presence of the router is detected by the mobile terminal during the analysis step, transmitting, to the router, the identifier of the at least one actuator and the identifier of the remote control.
Abstract:
The drone comprises M antennas, with in particular two offset antennas located symmetrically at the ends of two arms for the connection to the propulsion units (24), and a ventral antenna under the drone body. The radio transmission is operated simultaneously on N similar RF channels, with 2≤N
Abstract:
Radio control for electric devices comprising a containment body (2) provided with buttons or keys (3) inside which there is an electronic board including at least one electronic transmitter (52) to transmit a unique code in the direction of such electric devices and a microprocessor (4) to which the generated signals are sent by pressing such buttons (3) and that controls such a transmitter and that determines such a unique transmissible code.Each time the button (3) is pressed the code is transmitted by such a transmitter at least once at a first frequency and then retransmitted at least once at a second frequency.
Abstract:
A wireless communication system comprises one or more control units operable to transmit control signals, a plurality of actuators responsive to the control signals, and a plurality of sensors operable to transmit sensor data used by the one or more control units in generating the control signals. Each of the sensors, actuators, and one or more control units are located at a fixed position in the system relative to one another. Each of the plurality of sensors and each of the plurality of actuators are coupled to at least one of the one or more control units via a plurality of wireless paths. Each of the plurality of sensors are operable to transmit the sensor data in an assigned time slot to at least one of the one or more control units over a plurality of wireless channels in each of the plurality of wireless paths. The number of channels in each of the plurality of wireless paths is determined based, at least in part, on a worst-case estimate of potential interference, and each of the plurality of sensors is operable to pseudo-randomly switch the plurality of channels over which the sensor data is transmitted.
Abstract:
A hand-held device with a sensor for providing a signal indicative of a position of the hand-held device relative to an object surface enables power to the sensor at a first time interval when the hand-held device is indicated to be in a position that is stationary and adjacent relative to the object surface, enables power to the sensor at a second time interval shorter than the first time interval when the hand-held device is indicated to be in a position that is moving and adjacent relative to the object surface, and enables power to the sensor at a third time interval when the hand-held device is determined to be in a position that is removed relative to the object surface.
Abstract:
Systems and devices for controlling at least one entertainment device include at least one remote in two-way communication with a base device. Memories of the remote and the base device are operable to store substantially the same data as the other such that if the remote or base device fails, data in the memory of the non-failing device is loaded into a memory of a replacement device. A memory of a second remote may also store the same data as the remote memory such that if either the first remote or the base device fails, data in the memory of the second remote is loaded into a memory of a replacement device.
Abstract:
A passenger services system of an aircraft includes a cabin services system of a passenger service unit in the aircraft. The passenger service unit is associated with a passenger seat of the aircraft. The passenger services system further includes an infrared transmitting unit associated with the passenger seat. The infrared transmitting unit is configured to send signals to control operation of the cabin services system. The passenger services system includes a control unit including an infrared receiver. The control unit is associated with the passenger service unit. The infrared receiver is configured to receive the signals from the infrared transmitting unit. The control unit is configured to control the operation of the cabin services system in response to receiving the signals.
Abstract:
An arrangement with an actuator has a transmitting device for transmitting control telegrams with a control command for the actuator. At least two receiving devices receive the control telegrams and generate a control signal for the actuator. A decision device between the receiving devices and the actuator allows the actuator to implement the control signals with a release signal if the control signal is present from all or a minimum number of receiving devices. The transmission device transmits the control command to each receiving device with a receiver-specific control telegram that is provided with a respective control instruction that indicates the continuous telegram number of the respective transmitted control telegram in encrypted or non-encrypted form. The receiving devices accept a control telegram as valid if the control instruction indicates a telegram number that is expected by the receiver. The control signal is generated if the control telegram is valid.