Abstract:
A solution is provided for controlling usage of one or more software programs on one or more mobile computing devices. A corresponding method comprises monitoring an indication of a position of each mobile computing device to determine a location area of the mobile computing device. The method comprises assigning each one of the software programs to a usage group. For each location area, the software programs of each software program type are assigned to the corresponding usage groups providing one or more usage characteristics that fulfill one or more usage requirements of each software program; this is performed according to one or more optimization criteria depending on one or more usage weights of each usage group. The method comprises enabling the usage of each software program according to the usage characteristics of the corresponding usage group.
Abstract:
A method for supporting admission control and/or path selection in a communication network, the network including a plurality of wireless communication links, possibly of different link technologies, established between a plurality of network nodes, includes the steps of partitioning the communication links of the network into groups of communication links—link groups—, assigning each link group an associated link group controller that is configured to observe and/or measure the performance and/or quality of the link group, based on the observations and/or measurements, computing estimates of metrics for the capacity of the respective link group and the costs for using each of the communication links of the respective link group, and transmitting the estimates to at least one resource management entity being configured to take admission control and/or path selection decisions on the basis of the estimates. A communication network with admission control and/or path selection supporting functionality is described.
Abstract:
In one embodiment, a first node is adapted for communication with a plurality of additional nodes of a communication network, such as a Delaunay Triangulation (DT) network. The first node is configured to detect a failure in delivery of a broadcast packet to at least a given one of the additional nodes. Responsive to the detected failure in delivery of the broadcast packet to the given additional node, the first node encapsulates the broadcast packet in a unicast packet for delivery to a downstream node of the given additional node. The first node may be configured to detect the failure in delivery of the broadcast packet to the given additional node using a hop level acknowledgment process. Other embodiments are configured to facilitate implementation of progressive search by communicating identifiers from boundary nodes of the network that are reached in a given stage of the progressive search.
Abstract:
A unifying network model with a structure and architecture configured to address security, interoperability, mobility, and resource management, including priority and quality of services is provided. The network of the network model is structured as a hierarchical mesh network, with dynamically generated routing tables. The configuration of the network model optimizes routing and distributes communication load. Every device on the network is capable of being both an endpoint and a forwarder of communications. The network model may include underlying networks that are represented with one of two models, the link model or the star model. The nodes are organized in a hierarchical relationship structure to optimizes throughput. The model may include a cryptographic method of dynamically assigning local network addresses.
Abstract:
A method is provided in one example embodiment and includes allocating by a scheduler a transmission opportunity to each of one or more flows listed in a tracking table associated with the a scheduler; and, for each of the one or more flows, sending a bandwidth allocation message to a network element associated with the flow in accordance with a schedule maintained by the scheduler, wherein the bandwidth allocation request is unsolicited by the network element; and determining whether the flow optimized use of the transmission opportunity in accordance with an allocation policy implemented by the scheduler. The method further includes adjusting the schedule in accordance with results of the determining for each of the one or more flows. In certain embodiments, the allocating may comprise allocating an equal transmission opportunity to each of the one or more flows.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Peer to Peer communication. For example, a device may include a controller to generate a Peer to Peer discovery frame including at least one Multicast attribute, the Multicast Attribute including an address field and one or more attribute fields, the address field to indicate a plurality of devices; and a radio to transmit the Peer to Peer discovery frame, and to transmit multicast traffic to the plurality of devices according to the one or more attribute fields.
Abstract:
A utility computing portal supports public and private modules for application development in a cloud computing environment. The public nodules support downloads, customer support and access to a development community. The private modules are accessible to users with valid login credentials or those authenticated via a related entity, such as a Live ID. The private modules may include modules for testing, analysis, and billing. The utility computing portal also supports access to application configuration, for example, allowing a manager to change the number of front end and backend physical/virtual machines available to various application roles.
Abstract:
An embodiment is a method of managing bandwidth, performed by a computing system. The system receives user-selected connection parameters associated with a subscriber device. The system associates a network identifier of the subscriber device with a group bandwidth policy, based on the user-selected connection parameters. The system stores, in computer-readable storage media, parameters associated with the group bandwidth policy, in association with the network identifier of the subscriber device. The system receives, at a gateway device, network communication data from the subscriber device. The system limits, at the gateway device, bandwidth available to the network communication data, based on the stored parameters associated with the group bandwidth policy.
Abstract:
A network system, method, and device are provided for improving network communication performance between at least a first client site and a second client site, where the first client site and the second client site are at a distance from one another that is such that would usually require long haul network communication. The network system includes at least one network bonding/aggregation computer system for bonding or aggregating one or more diverse network connections so as to configure a bonded/aggregated connection that has increased throughput; and at least one network server component, configured to interoperate with the client site network component, the network server component including a server/concentrator or a cloud concentrator element that is implemented at an access point to an multiple protocol label switching network.
Abstract:
A bandwidth management system includes a plurality of queues respectively corresponding to a plurality of zones. An enqueuing module receives network traffic from one or more incoming network interfaces, determines a belonging zone to which the network traffic belongs, and enqueues the network traffic on a queue corresponding to the belonging zone. A dequeuing module selectively dequeues data from the queues and passes the data to one or more outgoing network interfaces. When dequeuing data from the queues the dequeuing module dequeues an amount of data from a selected queue, and the amount of data dequeued from the selected queue is determined according to user load of a zone to which the selected queue corresponds.