Abstract:
Provided is a production process for a graft copolymer or a thermoplastic resin composition containing the above graft copolymer, which comprises graft-polymerizing 100 parts by mass of a combination of 20 to 100% by mass of a reactive polyolefin and 0 to 80% by mass of a polyolefin other than the reactive polyolefin with 0.2 to 300 parts by mass of at least one specific monomer under the presence of a radical initiator and which is useful as a sealant, a modifier for polyolefins, a surface treating agent, a primer treating agent, a coating agent component and the like.
Abstract:
The invention relates to a method for the manufacture of a functionalised polyolefin by free radical grafting of a polyolefin with a monomer in the presence of 0.5 to 25 weight percent, based on the total weight of polyolefin and monomer, of a propylene polymer and/or copolymer comprising a free radical initiator distributed therein.
Abstract:
Peroxide initiators are disclosed that can be used at lower temperatures during HIPS production. Enhanced formation of graft polymers between polystyrene and polybutadiene (rubber) can be accomplished by using these lower temperature peroxide initiators that have a 1 hour half-life period at one or more temperatures from 95° C. to less than 111° C. during the pre-inversion stage. “Higher” temperature initiators are used during and/or after inversion. The use of such “low” temperature initiators improves polymerization rates and grafting values, while reducing the swell index and the amount of rubber used, thereby producing improved HIPS more rapidly and at a lower cost. Also disclosed are HIPS compositions and products produced by such “low” temperature initiators as well as a method of producing improved HIPS.
Abstract:
The invention relates to a process for the preparation of compound(s) comprising at least one acrylate or methacrylate group, at least one linear carbonate group and at least one 5-membered cyclic carbonate group. The process comprises (A) a selective ring-opening step and (B) a (meth)acrylation step. The process is environment-friendly and compounds obtained are usable in radiation curable compositions, for example in radiation-curable inks.
Abstract:
Disclosed is a method for producing a modified propylene polymer, the method comprising heating a mixture of 100 parts by weight of a propylene polymer (A) defined below and from 0.1 to 50 parts by weight of an ethylenically unsaturated bond-containing monomer (B) in the presence of from 0.01 to 20 parts by weight of an organic peroxide (C); propylene polymer (A) being a propylene polymer composed of from 0.5 to 90% by weight of a propylene polymer component (A1) having an intrinsic viscosity [η], as measured in tetralin at 135° C., of from 5 dl/g to 15 dl/g and from 10 to 99.5% by weight of a propylene polymer component (A2) having an intrinsic viscosity [η], as measured in tetralin at 135° C., of not less than 0.1 dl/g but less than 5 dl/g.
Abstract:
The present invention provides an aqueous emulsion having excellent polymerization stability and standing stability and a redispersible powder. Specifically, the present invention relates to an aqueous emulsion of a polymer obtained by polymerizing an acrylic monomer in the presence of a polyvinyl alcohol containing an acetoacetic ester group; wherein the polyvinyl alcohol containing an acetoacetic ester group has block character [η] of 0.3 to 0.6, hydrolysis degree of at least 97% by mol and acetoacetic esterification degree of 0.01 to 1.5% by mol, and the value obtained by dividing the maximum value by the minimum value of the respective average acetoacetic esterification degree for each of the polyvinyl alcohol containing an acetoacetic ester group separated by particle size of 44 to 74, 74 to 105, 105 to 177, 177 to 297, 297 to 500 and 500 to 1680 μm is 1.0 to 3.0. Also, the present invention relates to a redispersible fiber obtained by drying the aqueous emulsion.
Abstract:
An optical resin, of which the refractive index continuously changes in a specific direction, is produced by filling a polymerization container with a mixed solution containing at least one type of polymerizable monomer or polymerizable monomer sol and at least one type of substance whose solubility parameter differs by 7 (cal/cm.sup.3).sup.1/2 or less and refractive index by 0.001 or more from those of a polymer produced by polymerization of the monomer, and by subjecting the mixture to polymerization reaction by applying heat or energy rays to the container from outside so that the polymerization reaction starts and progresses preferentially from a particular region of the mixture, thus forming a concentration gradient of the substance having different refractive index.The polymerization container may be made of a polymer which swells and dissolves into the mixed solution from an inner wall thereof. After completing the polymerization reaction, the optical resin is subjected to hot drawing to obtain an optical conductor. Further, post-treatment based on crosslinking reaction is applied to improve heat resistance.
Abstract:
A process for the manufacture of materials with a high chemical and mechanical resistance in which for each 100 parts by volume of vinylester resin treated with 0.85-1.47 parts by volume of an accelerant in the form of cobalt naphthenate, there are added at least in two batches 50-900 parts by volume of an inorganic filler constituting previously roasted at a temperature not lower than 470 K disintegrated to a particle size of at least 30 .mu.m phosphogypsum or a composition of phosphogypsum with glass-forming oxides or phosphogypsum with magnetite or phosphogypsum with microsphere, after which on continuous stirring there is added, if necessary, up to 60 parts by volume of styrene and/or up to 0.2 parts by volume of dimethylaniline, and then the whole is polymerized in the presence of know initiators such as organic peroxides. The materials with a high chemical and mechanical resistance constitute polymerized composition of synthetic resin and inorganic fillers, consisting of 7.5-88.1% by weight of vinylester resin, styrene and/or a low-molecular-weight unsaturated polyester resin in a quantity up to 34.1% by weight, and 14.3-86.6% by weight of phosphogypsum or 0.4-46.6% by weight of phosphogypsum and 6.4-44.8% by weight of glass-forming oxides or 4.6-53.5% by weight of microsphere or 5.5-42.1% by weight of magnetite. The process for the manufacture of these materials makes it possible to utilize industrial wastes resulted from production of phosphoric acid, while the material itself in all its varieties is characterized by a very good resistance to aggressive media, also at elevated temperatures, and suitable for processing by mechanical methods as well as for combining with other materials by using to that end an incompletely polymerized composition of the material.
Abstract:
This invention relates to a two stage aqueous emulsion polymerization process for making graft copolymers. In the first stage, at least one first ethylenically unsaturated monomer is polymerized in the presence of at least one mercapto-olefin compound to form a macromonomer with terminal functional groups. In the second stage, at least one second ethylenically unsaturated monomer is polymerized in the presence of the macromonomer such that a copolymer is formed with a backbone of polymerized units of the at least one second ethylenically unsaturated monomer and side chains of the macromonomer.
Abstract:
Release coating compositions comprising polysiloxane-grafted copolymer and blends thereof with other polymeric materials on sheet materials and the back side of adhesive tapes are provided. Controlled and predictable release is achieved through variation of the number and the length, e.g., the molecular weight, of polysiloxane grafts in the copolymer.