Abstract:
Methods of marking paper products and marked paper products are provided. Some methods include irradiating the paper product to alter the functionalization of the paper.
Abstract:
An ion generator for the generation of a plasma is assembled from module subassemblies. The first subassembly includes a dielectric plate 1, on the first surface 1a of which are located a large number of first electrodes 3, and the second surface 1b of which is coated with a structured conductive layer 2. The second subassembly includes an aperatured spacer plate with a large number of dielectric spacers with a second electrode 5 on the side facing away from the dielectric plate 1. In joining the subassemblies together, the aperatured spacer plate is connected to the dielectric plate 1 at its first surface 1a in such a way that cavities 6 for accommodating plasma are formed by the first electrodes 3, parts of the first surface 1a of the dielectric plate 1 and the spacers 4 with the second electrodes 5. The first set of electrodes 3 shield the points where the subassemblies are bonded together from plasma in the cavities.
Abstract:
Electron devices employing electron sources including a material having a surface exhibiting a very low/negative electron affinity such as, for example, the 111 crystallographic plane of type II-B diamond. Electron sources with geometric discontinuities exhibiting radii of curvature of greater than approximately 1000.ANG. are provided which substantially improve electron emission levels and relax tip/edge feature requirements. Electron devices employing such electron sources are described including image generation electron devices, light source electron devices, and information signal amplifier electron devices.
Abstract:
An ion source having a sintered metal head for ionizing various substances is disclosed. This ion source comprises a container made of a material which has a higher fusing point than that of the substance which is to be ionized, and a tip formed of a molded sintered metal of a higher fusing point than that of the substance which is to be ionized. The head is formed into a nearly conical shape and has a porosity capable of allowing the substance which is to be ionized to infiltrate therethrough in the molten state and the tip of the head is positioned at the opening of one end of the container for the ionizable material and arranged in such a manner that it protrudes beyond the end of the container.
Abstract:
An ion beam generating apparatus is used together with a vacuum chamber. The ion beam generating apparatus has an anode assembly arranged inside the vacuum chamber, a gas supply mechanism for supplying a gas into the vicinity of the anode assembly, a temperature control mechanism for controlling a temperature of an apex of the anode assembly, and a cooling mechanism for cooling at least part of the anode assembly.
Abstract:
An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.
Abstract:
The invention provides a power source device for an ion source, including first to third power source units coupled to the anode, the cathode and the beam extraction electrode of the ion source. The second power source unit applies an alternating voltage across the cathode. An alternating heating current then flows through the cathode. Each cycle of the alternating voltage from the second power source unit has positive and negative components with preset levels which are generated with a predetermined time interval between them. The power source device further includes a control circuit for interrupting the operation of the first and third power source units during the predetermined time interval.
Abstract:
An electron beam and collective ion-electron beam accelerating apparatus inhich a relativistic electron beam and ions moving with it are accelerated in speed by passing them through a converging waveguide (i.e., a drift tube) of gradually decreasing diameter. The ions are separated from the electrons upon leaving the waveguide.
Abstract:
Method and apparatus for generating particles having the characteristics and mobility of free electrons. The particles may be dispersed into the environment around the apparatus without circulating air through the apparatus. A relatively high alternating voltage is applied between alternate spaced electrically conductive plates covered with a dielectric material which has high coefficients of secondary electron emission and sufficient dielectric strength to withstand the generation of a cold glow discharge or plasma between facing layers of the material.
Abstract:
An ion source having an extremely high beam current density at low gas flow rates and therefore, low system pressures. The ion source includes an electrode system which consists of a cathode of, for example, spherical or cylindrical configuration which cathode encloses an anode having a pair of screen electrodes symmetrically disposed about and parallel to the plane of the anode, the anode and screen electrodes each having apertures formed therein. A gas inlet is formed in the cathode wall, preferably between the screen electrodes, and an ion beam outlet aperture of substantially the same size as the anode aperture is provided in the cathode. Upon application of suitable potentials to the anode, cathode and screen electrodes, the latter preferably being at a potential substantially equal to cathode potential, gas introduced through the gas supply inlet is ionised and the positive ions created are accelerated towards the cathode and emerge in a beam through the ion beam outlet aperture.