Abstract:
The present invention relates to a new chemical synthesis, intermediates and catalysts useful for the preparation of the neprilysin (NEP) inhibitor sacubitril, inter alia via nitro 5 compounds. It further relates to new intermediate compounds and their use for said new chemical synthesis route, as well as a new catalyst ligand.
Abstract:
Disclosed is an apparatus for synthesizing nitroalkanes by reaction of a hydrocarbon feedstock with aqueous nitric acid. The apparatus may be designed such that it can synthesize more than one nitroalkane using the same equipment.
Abstract:
The invention relates to a method for producing nitrobenzene, in which crude nitrobenzene is first produced by nitrating benzene and said crude nitrobenzene is then washed in succession in at least one acid wash, in at least one alkaline wash and in at least one neutral wash, at least one additional wash with an aqueous solution of a potassium salt being interposed between the last alkaline wash and the first neutral wash.
Abstract:
The invention relates to a process for making HOF.RCN and using it to oxidise organic substrates in a quick and safe way. The process comprises passing diluted fluorine through a conduit and RCN in water through another conduit into a microreactor to form HOF.RCN and reacting this with an organic substrates.
Abstract:
The present invention relates to a process for producing 5-nitro-3,4-dihydro-1(2H)-naphthalinone, 1,5-naphthalenediamine and 1,5-naphthalene diisocyanate, in which 4-(2-nitrophenyl)-n-butyronitrile is converted to 4-(2-nitrophenyl)-n-butyric acid.
Abstract:
The present invention relates to a process for working up or treating aqueous waste waters which are formed during the nitration of toluene to dinitrotoluene with nitrating acid. These aqueous waste waters containing acidic wash water and alkaline wash water from the dinitrotoluene washing step, and distillate from the sulfuric acid concentration step. The process comprises, a) combining the acidic and alkaline waste waters from the washing step and the aqueous distillate from the sulfuric acid concentration step such that the resulting mixture has a pH below 5, b) separating the aqueous and organic phases which are formed by phase separation, c) subjecting the aqueous phase from b) to an extraction step, wherein d) the organic components contained in the aqueous phase from c) are extracted with toluene, and e) introducing the toluene phase enriched with the organic components into the toluene nitration.
Abstract:
p-Nitrophenolic compounds, e.g., p-nitrophenol itself, are selectively prepared by (a) reacting a phenolic compound with a nitrosating agent in the presence of sulfuric acid, the concentration of which H.sub.2 SO.sub.4 being at least 60%, (b) oxidizing the p-nitrosophenolic compound thus formed with nitric acid, the concentration of sulfuric acid in the medium of reaction, upon completion of oxidation, being no greater than 80%, and (c) separating the p-nitrophenolic compound which thus precipitates.
Abstract translation:通过(a)在硫酸存在下使酚类化合物与亚硝化剂反应,其中H 2 SO 4的浓度为至少60%,(b)将硝基酚类化合物氧化为 由硝酸形成的对亚硝基苯酚化合物,氧化后的反应介质中的硫酸浓度不大于80%,(c)分离因此析出的对硝基酚化合物。
Abstract:
Methods for the production of 1,1,1-trihalogeno-2-nitroethanes from 1,1-dihalogenoethylene by using nitric acid or its salt and hydrogen chloride or hydrogen bromide or its salt, and for the production of .alpha.-unsaturated amines from the 1,1,1-trihalogeno-2-nitroethanes which are useful as insecticides.
Abstract:
Benzaldehydes of the formula ##STR1## can be obtained by reaction of substituted .beta.-amino-styrenes of the formula ##STR2## in which R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5, R.sup.8, R.sup.9, R.sup.10, m, n and o have the scope of meaning indicated in the description, with oxygen in the presence of a Cu compound in the solution of an aprotic polar solvent at 0.degree.-120.degree. C.