HYDROCRACKING PROCESS AND SYSTEM INCLUDING SEPARATION OF HEAVY POLY NUCLEAR AROMATICS FROM RECYCLE BY OXIDATION

    公开(公告)号:US20210130702A1

    公开(公告)日:2021-05-06

    申请号:US16674408

    申请日:2019-11-05

    IPC分类号: C10G27/12 C10G67/12

    摘要: Hydrocracked bottoms fractions are treated to separate HPNA compounds and/or HPNA precursor compounds and produce a reduced-HPNA hydrocracked bottoms fraction effective for recycle, in a configuration of a single-stage hydrocracking reactor, series-flow once through hydrocracking operation, or two-stage hydrocracking operation. A process for separation of HPNA and/or HPNA precursor compounds from a hydrocracked bottoms fraction of a hydroprocessing reaction effluent comprises contacting the hydrocracked bottoms fraction with an effective quantity of a oxidizing agent to produce corresponding oxidized HPNA compounds and/or oxidized HPNA precursor compounds, and to form an oxidized hydrocracked bottoms fraction. The oxidized hydrocracked bottoms fraction is separated into an HPNA-reduced hydrocracked bottoms portion and an oxidized HPNA portion. All or a portion of the HPNA-reduced hydrocracked bottoms portion is recycled within the hydrocracking operation.

    Purification of hydrocarbons
    39.
    发明申请

    公开(公告)号:US20210071093A1

    公开(公告)日:2021-03-11

    申请号:US16959945

    申请日:2019-01-23

    申请人: John Taylor

    发明人: John Taylor

    摘要: We disclose a process for purification of hydrocarbons, suitable for a wide range of contexts such as refining bunker fuels to yield low-sulphur fuels, cleaning of waste engine oil (etc) to yield a usable hydrocarbon product, recovery of hydrocarbons from used tyres, recovery of hydrocarbons from thermoplastics etc, as well as the treatment of crude oils, shale oils, and the tailings remaining after fractionation and like processes. The method comprises the steps of heating the hydrocarbon thereby to release a gas phase, contacting the gas with an aqueous persulphate electrolyte within a reaction chamber, and condensing the gas to a liquid or a liquid/gas mixture and removing its aqueous component. It also comprises subjecting the reaction product to an electrical field generated by at least two opposing electrode plates between which the reaction product flows; this electrolytic step regenerates the persulphate electrolyte which can be recirculated within the process. The process is ideally applied in an environment at lower than atmospheric pressure, such as less than 1500 Pa. A wide range of hydrocarbons can be treated in this way. Used hydrocarbons such as engine oils and sulphur-contaminated fuels are prime examples, but there are a wide range of others such as hydrocarbons derived from the pyrolysis of a material having a hydrocarbon content. One such example is a mix of used rubber (such as end-of-life tyres) and used oils (such as engine oils, waste marine oils), which can be pyrolysed together to yield a hydrocarbon liquid which can be treated as above, and a residue that provides a useful solid fuel.