Abstract:
The present invention is directed to compositions and methods related to the synthesis and modification of uridine-5′-diphospho-sulfoquinovose (UDP-SQ). In particular, the methods of the present invention comprise the utilization of recombinant enzymes from Arabidopsis thaliana, UDP-glucose, and a sulfur donor to synthesize UDP-SQ, and the subsequent modification of UDP-SQ to form compounds including, but not limited to, 6-sulfo-α-D-quinovosyl diaclyglycerol (SQDG) and alkyl sulfoquinovoside. The compositions and methods of the invention provide a more simple, rapid means of synthesizing UDP-SQ, and the subsequent modification of UDP-SQ to compounds including, but not limited to, SQDG.
Abstract:
A method of forming a fin field effect transistor includes forming a fin and forming a source region on a first end of the fin and a drain region on a second end of the fin. The method further includes forming a dummy gate with a first semi-conducting material in a first pattern over the fin and forming a dielectric layer around the dummy gate. The method also includes removing the first semi-conducting material to leave a trench in the dielectric layer corresponding to the first pattern, thinning a portion of the fin exposed within the trench, and forming a metal gate within the trench.
Abstract:
A double gate germanium metal-oxide semiconductor field-effect transistor (MOSFET) includes a germanium fin, a first gate formed adjacent a first side of the germanium fin, and a second gate formed adjacent a second side of the germanium fin opposite the first side. A triple gate MOSFET includes a germanium fin, a first gate formed adjacent a first side of the germanium fin, a second gate formed adjacent a second side of the germanium fin opposite the first side, and a top gate formed on top of the germanium fin. An all-around gate MOSFET includes a germanium fin, a first sidewall gate structure formed adjacent a first side of the germanium fin, a second sidewall gate structure formed adjacent a second side of the germanium fin, and additional gate structures formed on and around the germanium fin.
Abstract:
A method of manufacturing a semiconductor device may include forming a fin structure on an insulator and depositing a gate material over the fin structure. The method may also include forming a sacrificial material over the gate material and planarizing the sacrificial material. An antireflective coating may be deposited on the planarized sacrificial material. A gate structure may then be formed by etching the gate material.
Abstract:
A method forms a semiconductor device from a device that includes a first source region, a first drain region, and a first fin structure that are separated from a second source region, a second drain region, and a second fin structure by an insulating layer. The method may include forming a dielectric layer over the device and removing portions of the dielectric layer to create covered portions and bare portions. The method may also include depositing a gate material over the covered portions and bare portions, doping the first fin structure, the first source region, and the first drain region with a first material, and doping the second fin structure, the second source region, and the second drain region with a second material. The method may further include removing a portion of the gate material over at least one covered portion to form the semiconductor device.
Abstract:
A semiconductor device includes a fin, a source region formed adjacent the fin and having a height greater than that of the fin, and a drain region formed adjacent the a second side of the fin and having a height greater than that of the fin. A metal gate region is formed at a top surface and at least one side surface of the fin. A width of the source and drain region may be greater than that of the fin. The semiconductor device may exhibit a reduced series resistance and an improved transistor drive current.
Abstract:
A method of manufacturing a semiconductor device may include forming a fin structure on an insulator and depositing a gate material over the fin structure. The method may also include depositing an organic anti-reflective coating on the gate material and forming a gate mask on the organic anti-reflective coating. The organic anti-reflective coating around the gate mask may be removed, and the gate material around the gate mask may be removed to define a gate.
Abstract:
A method for forming a metal-oxide semiconductor field-effect transistor (MOSFET) includes patterning a fin area, a source region, and a drain region on a substrate, forming a fin in the fin area, and forming a mask in the fin area. The method further includes etching the mask to expose a channel area of the MOSFET, etching the fin to thin a width of the fin in the channel area, forming a gate over the fin, and forming contacts to the gate, the source region, and the drain region.
Abstract:
Ultra narrow and thin polycrystalline silicon gate electrodes are formed by patterning a polysilicon gate precursor, reducing its width and height by selectively oxidizing its upper and side surfaces, and then removing the oxidized surfaces. Embodiments include patterning the polysilicon gate precursor with an oxide layer thereunder, ion implanting to form deep source/drain regions, forming a nitride layer on the substrate surface on each side of the polysilicon gate precursor, thermally oxidizing the upper and side surfaces of the polysilicon gate precursor thereby consuming silicon, and then removing the oxidized upper and side surfaces leaving a polysilicon gate electrode with a reduced width and a reduced height. Subsequent processing includes forming shallow source/drain extensions, forming dielectric sidewall spacers on the polysilicon gate electrode and then forming metal silicide layers on the upper surface of the polysilicon gate electrode and over the source/drain regions.
Abstract:
A method of forming a fin field effect transistor includes forming a fin and forming a source region adjacent a first end of the fin and a drain region adjacent a second end of the fin. The method further includes forming a dummy gate over the fin and forming a dielectric layer around the dummy gate. The method also includes removing the dummy gate to form a trench in the dielectric layer and forming a metal gate in the trench.