Abstract:
A linear positioning apparatus includes an intermediate portion having an axis, and first and second end portions mounted with flexure legs thereto. The flexure legs accommodate motion of the intermediate portion relative to the end portions along the axis, but inhibit motion of the intermediate portion relative to the end portions in directions not parallel to the axis. The apparatus can accommodate forces having off-axis components, and produce motion that comprises substantially no off-axis component. The apparatus is useful in, for example, optical systems where precise linear motion is required.
Abstract:
A method and apparatus for measuring bandwidth of light emitted from a laser is disclosed which may comprise: a first and second wavelength sensitive optical bandwidth detectors providing, respectively, an output representative of a first parameter indicative of the bandwidth of the emitted light as measured respectively by the first and second bandwidth detectors, and an actual bandwidth calculation apparatus adapted to utilize these two outputs as part of a multivariable linear equation employing predetermined calibration variables specific to either the first or the second bandwidth detector, to calculate a first actual bandwidth parameter or a second actual bandwidth parameter. The first actual bandwidth parameter may be a spectrum full width at some percent of the maximum (“FWXM”), and the second actual bandwidth parameter may be a portion containing some percentage of the energy (“EX”). The first and second bandwidth detectors may an etalon and the outputs may be representative of a fringe width of a fringe of an optical output of the respective etalon at FWXM. The precomputed calibration variables may be derived from respective three dimensional plots representing, respectively, detector outputs in relation to a calibrating input light with known values of the first and second actual bandwidth parameters, which may be FWXM and EX. The first/second three dimensional plot may provide a solution: (first/second output)=(a/d*(calibrating input light known value of FWXM))+(b/e*(calibrating input light known value of EX)+c/f; and the actual bandwidth calculation apparatus may use the derived equation: (first actual bandwidth parameter)=((b*(second output))−(e*(first output))+ce−bf)/(bd−ae), or the equation: (second actual bandwidth parameter)=((a*(second output))−(d*(first output))+cd−af)/(ae−bd). FWXM may be FWHM and EX may be E95. The transfer function of the first optical bandwidth detector may be selected to be much more sensitive to FWXM than to EX and the transfer function of the second optical bandwidth detector may be selected to be much more sensitive to EX than to FWXM.
Abstract:
Remote sensing of the temperature of a greybody or blackbody radiator is effected by passing its radiation (24) through a modulated infrared filter spectrometer. The infrared filter comprises, in sequence, a band pass filter (20), a first polariser (21) which polarises the radiation, an electro-optical element (22) which splits the polarised radiation into two orthogonally polarised components, and a second polariser (23). A lens (28) images the radiation leaving the second polariser onto a detector (27). The electrical signal from the detector (27) is input to a numerical analyser. The electro-optical element (22), typically comprising a birefringent crystal assembly (25) and a birefringent trim plate (26), is configured so that the net optical delay of the orthogonally polarised components passed through it is such that the recombined components are at or near a peak or trough in their interferogram. A sinusoidally varying voltage is applied to the electro-optical element to modulate the net delay of the components passed through the electro-optical element. The numerical analyser is programmed to compute the harmonic amplitude ratio (the ratio of signal amplitudes at the fundamental and second harmonic of the frequency of the modulating voltage) of the signal that it receives from the detector (27). The harmonic amplitude ratio is a function of the temperature of the radiator, which can be estimated by reference to a calibration look-up table.
Abstract:
A detector array that eliminates the channel spectrum effect. In one embodiment the detector consists of a charge couple device (CCD) detector having a photoactive layer supported on a wedge-shaped substrate. Incident radiation impinging any of the pixels and passing through the substrate to the wedge-shaped surface thereof is reflected back at an angle away from the pixel from which it passed through. An infrared array and a single element detector each including a wedge-shaped substrate are also disclosed. The detectors do not require costly signal processing equipment and further can be constructed in accordance with well known manufacturing techniques and with little or no additional cost beyond that normally associated with producing such devices.
Abstract:
A spectrometer, typically an FT-IR spectrometer, is operated in a continuous mode so that it is carrying out scans on a continuous basis. The acquired data is stored and can be retrieved when a sample measurement is made. This improves the response of the instrument.
Abstract:
A novel variation of Michelson's interferometer uses tilt- and shear-compensation optics to allow various mirror motions to produce variation of path difference. The tilt-compensation mechanism consists of two complementary reflections from a single plane mirror and, in some cases, the beamsplitter, to produce a beam having a constant angle of propagation, typically the same as the input beam. Using a retroreflector to invert the image of a single plane mirror or a sequence of plane mirrors before the second reflections produces complementary reflections. A particularly efficient embodiment of the present invention uses one or more balanced disk-shaped mirrors to effect very rapid variation of path difference by nutation or precession. Other advantages of tilt-compensation include photometric stability. This interferometer has applications in spectrometry, spectral imaging and metrology.
Abstract:
A method of measuring the spectral properties of broadband waves that combines interferometry with a wavelength disperser having many spectral channels to produce a fringing spectrum. Spectral mapping, Doppler shifts, metrology of angles, distances and secondary effects such as temperature, pressure, and acceleration which change an interferometer cavity length can be measured accurately by a compact instrument using broadband illumination. Broadband illumination avoids the fringe skip ambiguities of monochromatic waves. The interferometer provides arbitrarily high spectral resolution, simple instrument response, compactness, low cost, high field of view and high efficiency. The inclusion of a disperser increases fringe visibility and signal to noise ratio over an interferometer used alone for broadband waves. The fringing spectrum is represented as a wavelength dependent 2-d vector, which describes the fringe amplitude and phase. Vector mathematics such as generalized dot products rapidly computes average broadband phase shifts to high accuracy. A Moire effect between the interferometer's sinusoidal transmission and the illumination heterodynes high resolution spectral detail to low spectral detail, allowing the use of a low resolution disperser. Multiple parallel interferometer cavities of fixed delay allow the instantaneous mapping of a spectrum, with an instrument more compact for the same spectral resolution than a conventional dispersive spectrometer, and not requiring a scanning delay.
Abstract:
A method for compensating data age in measurement signals from an interferometer includes measuring a value of the measurement signal and adjusting the measured value based on the measurement signal with a data age adjustment value to correct for data age.
Abstract:
An interferometer includes a beamsplitter for splitting a source beam into a test beam and a reference beam, an imaging device for detecting an interference pattern, a mirror disposed in a path of the test beam for reflection of the test beam toward the imaging device, a micromirror disposed in a path of the reference beam for reflection of a portion of the reference beam toward the imaging device, and a focusing mechanism disposed for focusing the reference beam on the micromirror. The micromirror has a lateral dimension not exceeding the approximate lateral dimension of a central lobe of the reference beam focused thereon by the focusing mechanism. A spatial filter for reducing effects of aberration in a beam includes a reflector disposed upon a transparent base wherein the reflector has a lateral dimension not exceeding the approximate lateral dimension of a central lobe of the spatial intensity distribution of the beam focused upon the reflector.
Abstract:
A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.