Abstract:
Described embodiments include a device, a method, and a system. A described device includes a closed-cycle heat transfer device. The device includes a hollow member configured to be thermally coupled with and to be disposed substantially parallel to a length of a live transmission line of an overhead power transmission system. The power transmission system is configured to transport electric power from one place to another. The device includes a working fluid contained within the hollow member and tuned to transport heat received from the live transmission line to a heat removal structure. The device includes the heat removal structure configured to dissipate the transported heat.
Abstract:
Methods, computer program products, and systems are described that include measuring at least one effect of a combined bioactive agent and artificial sensory experience on an individual and/or modifying at least one of the bioactive agent or the artificial sensory experience at least partially based on the at least one effect.
Abstract:
A traveling wave nuclear fission reactor, fuel assembly, and a method of controlling burnup therein. In a traveling wave nuclear fission reactor, a nuclear fission reactor fuel assembly comprises a plurality of nuclear fission fuel rods that are exposed to a deflagration wave burnfront that, in turn, travels through the fuel rods. The excess reactivity is controlled by a plurality of movable neutron absorber structures that are selectively inserted into and withdrawn from the fuel assembly in order to control the excess reactivity and thus the location, speed and shape of the burnfront. Controlling location, speed and shape of the burnfront manages neutron fluence seen by fuel assembly structural materials in order to reduce risk of temperature and irradiation damage to the structural materials.
Abstract:
Described embodiments include a system and an apparatus. A described mobile robotic device includes a mobile chassis configured to travel on a transmission line of a power transmission system. The mobile robotic device includes an inspection module physically associated with the mobile chassis and configured to automatically inspect a structure associated with the power transmission system. The mobile robotic device includes a risk-assessment module physically associated with the mobile chassis and configured to assess a potential risk to the power transmission system in response to inspection data provided by the inspection module. The mobile robotic device includes a communication module physically associated with the mobile chassis and configured to output data indicative of the assessed potential risk.
Abstract:
Exemplary embodiments provide automated nuclear fission reactors and methods for their operation. Exemplary embodiments and aspects include, without limitation, re-use of nuclear fission fuel, alternate fuels and fuel geometries, modular fuel cores, fast fluid cooling, variable burn-up, programmable nuclear thermostats, fast flux irradiation, temperature-driven Surface area/volume ratio neutron absorption, low coolant temperature cores, refueling, and the like.
Abstract:
Methods, computer program products, and systems are described that include accepting at least one attribute of at least one individual, querying at least one database at least partly based on the at least one attribute, selecting from the at least one database at least one bioactive agent and at least one artificial sensory experience to address the at least one attribute of at least one individual, and/or presenting an indication of the at least one bioactive agent and the at least one artificial sensory experience at least partly based on the selecting from the at least one database at least one bioactive agent and at least one artificial sensory experience to address the at least one attribute of at least one individual.
Abstract:
Devices, systems, and methods are disclosed herein for treatment of a disease, disorder, or condition in a vertebrate subject. A device is provided that includes one or more passive cooling elements configured to be applied to one or more tissues of a vertebrate subject to modulate at least one activity of brown adipose tissue of the vertebrate subject, wherein at least a portion of the one or more passive cooling elements is configured to be implantable, and wherein the one or more passive cooling elements includes a first portion configured to be in association with the one or more tissues to be cooled, and a second portion configured to be placed in association with one or more tissues adjacent to an external epidermal tissue of the vertebrate subject.
Abstract:
Wearable injection guides and manufacture and use thereof are described, which include: a rigid needle-penetrable material having an inner surface and an outer surface, the inner surface having form-fitting contours substantially conforming to a topography of a body region of an individual and the outer surface including one or more fiducials indication of at least one treatment parameter.
Abstract:
Systems and methods are described relating to detecting an indication of a person within a specified proximity to at least one mobile device; and presenting an indication of location of the at least one mobile device at least partially based on the indication of the person within the specified proximity. Additionally, systems and methods are described relating to means for detecting an indication of a person within a specified proximity to at least one mobile device; and means for presenting an indication of location of the at least one mobile device at least partially based on the indication of the person within the specified proximity.
Abstract:
A collision detection system of a land vehicle may be configured to coordinate sensor operation with one or more other sensing systems of one or more other land vehicles. The coordination may comprise configuring the other sensing systems. In some embodiments, the coordination comprises forming a multistatic sensor comprising one or more emitters and/or one or more receivers. The collision detection system may be configured to receive detection signal(s) emitted by one or more of the other sensing systems. The coordination may further comprise directing detection signals of the multistatic sensor. The collision detection system may use sensor data acquired by use of the coordinated sensing system(s) to generate a collision detection model.