Abstract:
The design consists of the features of shape, ornament, pattern and configuration of the DUAL CHAMBER BOTTLE shown in solid lines in the drawings. The portions shown in stippled lines do not form part of the design.Drawings of the design are included.
Abstract:
Composite particles and methods for making the same. An absorbent material is formed into a particle. An optional performance-enhancing active is coupled to the absorbent material before, during, or after the particle-forming process, homogeneously and/or in layers. Additionally, the composite absorbent particle may include a core material. Preferred methods for creating the absorbent particles include a pan agglomeration process, a high shear agglomeration process, a low shear agglomeration process, a high pressure agglomeration process, a low pressure agglomeration process, a rotary drum agglomeration process, a mix muller process, a roll press compaction process, a pin mixer process, a batch tumble blending mixer process, an extrusion process, and a fluid bed process.
Abstract:
Composite particles and methods for making the same. An absorbent material is formed into a particle. An optional performance-enhancing active is coupled to the absorbent material before, during, or after the particle-forming process, homogeneously and/or in layers. Additionally, the composite absorbent particle may include a core material. Preferred methods for creating the absorbent particles include a pan agglomeration process, a high shear agglomeration process, a low shear agglomeration process, a high pressure agglomeration process, a low pressure agglomeration process, a rotary drum agglomeration process, a mix muller process, a roll press compaction process, a pin mixer process, a batch tumble blending mixer process, an extrusion process, and a fluid bed process.
Abstract:
The invention relates to compositions and methods of treatment employing compositions comprising polyelectrolyte complexes. The compositions include a water-soluble first polyelectrolyte bearing a net cationic charge or capable of developing a net cationic charge and a water-soluble second polyelectrolyte bearing a net anionic charge or capable of developing a net anionic charge. The total polyelectrolyte concentration of the first solution is at least 110 millimolar. The composition is free of coacervates, precipitates, latex particles, synthetic block copolymers, silicone copolymers, cross-linked poly(acrylic) and cross-linked water-soluble polyelectrolyte. The composition may be a concentrate, to be diluted prior to use to treat a surface.
Abstract:
The invention relates to compositions, methods of use, and methods of manufacture for an intercalated bleach compound and compositions thereof. The intercalated bleach compound has the formula Mx(OCl)y(O)m(OH)n where M is an alkaline earth metal such as magnesium, calcium or mixture thereof. The values of x and y independently equal any number greater than or equal to 1 (e.g., 1, 2, 3, 4, etc.), and m and n independently equal any number greater than or equal to 0 (e.g., 0, 1, 2, 3, 4, etc.), but m and n are not both 0. In addition, the molar ratio of the alkaline earth metal (e.g., magnesium or calcium) to hypochlorite is at least 3:1. In other words, x is ≧3y. The compounds exhibit excellent stability, little or no chlorine bleach odor, exhibit excellent pH buffering characteristics, and less reactivity with organic materials as compared to alternative chlorine bleach products.
Abstract:
The invention relates to drain cleaning compositions including relatively high concentrations of a hypochlorite oxidizing agent and a hydroxide (e.g., 4 to 12% and 2.5 to 10%, respectively. The composition further includes a surfactant (e.g., a surfactant blend, water, and exhibits a very high pH (e.g., at least 13). The composition is monophasic, even at high oxidizing and hydroxide concentrations. The surfactant may include a blend of an uncharged surfactant (e.g., an amphoteric surfactant or nonionic surfactant) and a charged surfactant (e.g., anionic, cationic, or a surfactant that becomes so under the high pH conditions of the composition). The ratio of charged to uncharged surfactant may be at least 1:10, e.g., from 1:10 to about 1:50.
Abstract:
The invention relates to compositions and methods of treatment employing compositions comprising polyelectrolyte complexes. The compositions include a water-soluble first polyelectrolyte bearing a net cationic charge or capable of developing a net cationic charge and a water-soluble second polyelectrolyte bearing a net anionic charge or capable of developing a net anionic charge. The total polyelectrolyte concentration of the first solution is at least 110 millimolar. The composition is free of coacervates, precipitates, latex particles, synthetic block copolymers, silicone copolymers, cross-linked poly(acrylic) and cross-linked water-soluble polyelectrolyte. The composition may be a concentrate, to be diluted prior to use to treat a surface.
Abstract:
An all-in-one cleaning device, e.g., such as may be used in cleaning the inside of a shower. The device may provide the ability to dispense a cleaning composition carried within the device itself, and scrub the cleaning composition onto or into the surfaces to be cleaned (e.g., shower walls, floors, corners, mirrors, etc.). The device may include a squeezable container housing holding the cleaning composition in a reservoir defined therein, with a dispensing valve configured to dispense the cleaning composition from the reservoir, through the valve when a user squeezes the container housing. A sled may be provided, e.g., snap-fit to a bottom wall of the container housing, with a substrate configured as a scrubbing pad attached to the bottom of the sled.
Abstract:
A trigger dispenser (1) for liquids comprises a suction valve (30) and a delivery valve (60), separate from the suction valve (30). The dispenser (1) has a detachable stop (100), comprising a bottom (104) positioned rearwards of the delivery valve (60) to form an end stop abutment with this during the dispensing step.
Abstract:
Fire ignition systems, combustible ignition structures, and methods of manufacturing and using such systems and devices are disclosed herein. In various embodiments, a fire ignition system may include a combustible container and a combustible ignition structure removably insertable into an interior of the combustible container. In various embodiments, the combustible ignition structure may include a base having a top surface and a chimney extending from the top surface. In various embodiments, the chimney may have an inner flue, a top opening into the flue, and an aperture through a side of the chimney into the flue. Other embodiments may be disclosed herein.