Abstract:
Techniques are provided for determining two or more user-specific parameters that can be measured or obtained using various methods, and using values of the two or more user-specific parameters to uniquely identify or authenticate an individual, or to determine authenticity or ownership of a device. Examples of the user-specific parameters may include biometric parameters, textual-based parameters, a combination of biometric parameters and textual-based parameters, and the like.
Abstract:
A pulsed waterjet apparatus comprising a water pump for generating a pressurized waterjet, an ultrasonic signal generator for generating an ultrasonic signal and an ultrasonic nozzle comprising an ultrasonic transducer for converting the ultrasonic signal into vibrations that pulse the pressurized waterjet to generate a pulsed waterjet, an exit orifice through which the pulsed waterjet exits and an inflow inlet axially aligned with the exit orifice.
Abstract:
A control device includes: a management information generation unit configured to generate or update logical-physical block address management information with respect to either data to be written to a non-volatile memory or data which has been already written in the non-volatile memory, the logical-physical block address management information indicating association between a logical block address and a physical block address on the non-volatile memory; and an access control unit configured to, during write of the data to the non-volatile memory, control write of the data as well as the logical-physical block address management information to a physical write unit of the non-volatile memory.
Abstract:
A landmine-neutralization system has a vehicle including a water supply tank and an electrical power supply and an electro-discharge apparatus. The electro-discharge apparatus includes one or more electro-discharge nozzles each having a discharge chamber that has an inlet for receiving water from the water supply tank and an outlet, a first electrode extending into the discharge chamber and being electrically connected to one or more high-voltage capacitors that are connected to, and chargeable by, the electrical power supply, a second electrode proximate to the first electrode to define a gap between the first and second electrodes and a switch to cause the one or more capacitors to discharge across the gap between the electrodes to create a plasma bubble which expands to form a shockwave that escapes through one or more exit orifices of the one or more nozzles ahead of the plasma bubble to thereby neutralize a landmine
Abstract:
A graphene preparing apparatus for exfoliating graphite includes a high-pressure water pump for generating a high-pressure flow of water, a waterjet nozzle for receiving the water and for generating a pulsed or cavitating waterjet, a graphite supply vessel having a supply duct for supplying graphite powder, an exfoliation chamber that has a first inlet for receiving the waterjet and a second inlet for receiving the graphite powder, an outlet through which a graphite slurry is expelled from the exfoliation chamber, a filtering unit downstream of the exfoliation chamber for separating graphene from the slurry and a graphene collection tank for collecting the graphene.
Abstract:
Techniques are provided for determining two or more user-specific parameters that can be measured or obtained using various methods, and using values of the two or more user-specific parameters to uniquely identify or authenticate an individual. Examples of the user-specific parameters may include biometric parameters, textual-based parameters, a combination of biometric parameters and textual-based parameters, and the like.
Abstract:
A control device includes: a management information generation unit configured to generate or update logical-physical block address management information with respect to either data to be written to a non-volatile memory or data which has been already written in the non-volatile memory, the logical-physical block address management information indicating association between a logical block address and a physical block address on the non-volatile memory; and an access control unit configured to, during write of the data to the non-volatile memory, control write of the data as well as the logical-physical block address management information to a physical write unit of the non-volatile memory.
Abstract:
In a semiconductor device in which a plurality of semiconductor chips are stacked, performance is enhanced without deteriorating productivity. The semiconductor device has a first semiconductor substrate having a first surface and a second surface opposite the first surface, a first insulating film formed on the first surface, a first hole formed in the first insulating film and partially extending into the first semiconductor substrate, a second hole formed in the second surface, a first electrode entirely filling the first hole, and a conductive film conformally formed in the second hole. The conductive film is electrically connected to a bottom surface of the first electrode and leaves a third hole in the first semiconductor substrate open. The third hole is configured to receive a second electrode of a second semiconductor substrate.
Abstract:
An integrated liquidjet system capable of stripping, prepping and coating a part includes a cell defining an enclosure, a jig for holding the part inside the cell, an ultrasonic nozzle having an ultrasonic transducer for generating a pulsed liquidjet, a coating particle source for supplying coating particles to the nozzle, a pressurized liquid source for supplying the nozzle with a pressurized liquid to enable the nozzle to generate the pulsed liquidjet to sequentially strip, prep and coat the part, a high-voltage electrode and a ground electrode inside the nozzle for charging the coating particles, and a human-machine interface external to the cell for receiving user commands and for controlling the pulsed liquidjet exiting from the nozzle in response to the user commands.
Abstract:
A method of stripping, prepping and coating a surface comprises first stripping the exiting coating from a surface, using continuous or pulsed fluid jet, followed by prepping the surface by the same fluid jet. The method also provides entraining particles into a fluid stream, if desired to generate a particle-entrained fluid stream that is directed at the surface to be stripped and prepped. The particles act as abrasive particles for prepping the surface to a prescribed surface roughness required for subsequent application of a coating to the surface. The method then entails coating the surface by electrically charging particles having the same chemical composition as the particles used to prep the surface. Finally, a charged-particle-entrained fluid stream is directed at high speed at the charged surface to coat the surface. The particles form both mechanical and electronic bonds with the surface.