Abstract:
A semiconductor device, a formation method thereof, and a package structure are provided. The semiconductor device comprises: a semiconductor substrate in which a metal-oxide-semiconductor field-effect transistor (MOSFET) is formed; a dielectric layer, provided on the semiconductor substrate and covering the MOSFET, wherein a plurality of interconnection structures are formed in the dielectric layer; and at least one heat dissipation path, embedded in the dielectric layer between the interconnection structures, for liquid or gas to circulate in the heat dissipation path, wherein openings of the heat dissipation path are exposed on the surface of the dielectric layer. The present invention can improve heat dissipation efficiency, and prevent chips from overheating.
Abstract:
The invention discloses a novel MOSFET device and its implementation method, the device comprising: a substrate; a gate stack structure, on either side of which is eliminated a conventional isolation spacer; source/drain regions located in the substrate on opposite sides of the gate stack structure; epitaxially grown metal silicide located on the source/drain regions; characterized in that, the epitaxially grown metal silicide is in direct contact with a channel region controlled by the gate stack structure, thereby eliminating the high resistance region below the conventional isolation spacer. At the same time, the epitaxially grown metal silicide can withstand a second high-temperature annealing used for improving the performance of a high-k gate dielectric material, which further improves the performance of the device. The MOSFET according to the invention reduces the parasitic resistance and capacitance greatly and thereby decreases the RC delay, thus improving the switching performance of the MOSFET device significantly.
Abstract:
A chemical-mechanical polishing tool and a method for preheating the same are disclosed. The chemical-mechanical polishing tool includes: a polishing pad, a deionized water supply channel, a polishing slurry supply channel and a polishing pad conditioner; and the chemical-mechanical polishing tool further includes: a heating apparatus, adapted to heat DI water fed to the DI water supply channel; a temperature sensor, arranged close to the polishing pad to measure a temperature of the polishing pad; and a preheating control system, connected to the temperature sensor, and adapted to control the DI water supply channel to spray the heated DI water to the polishing pad, and when the temperature measured by the temperature sensor is equal to or higher than a predetermined temperature, to close the DI water supply channel, control the polishing slurry supply channel to spray polishing slurry to the polishing pad, and startup the polishing pad conditioner to dress the polishing pad. The invention can reduce the consumption of polishing consumables by the chemical-mechanical polishing tool during preheating, thereby reducing production cost.
Abstract:
A through-silicon via and a method for forming the same are provided. The method includes: providing a semiconductor substrate, the semiconductor substrate including an upper surface and an opposite lower surface; etching the upper surface of the semiconductor substrate to form an opening; filling the opening with a conductive material to form a first nail; etching the lower surface of the semiconductor substrate to form a recess, such that the first nail is exposed at a bottom of the recess; filling the recess with a conductive material that can be etched, and etching the conductive material that can be etched to form a second nail, such that the second nail is vertically connected with the first nail; and filling a gap between the second nail and the semiconductor substrate and a gap between the second nail and an adjacent second nail with a dielectric layer. Then invention can improve the reliability of through-silicon vias and avoid voids.
Abstract:
A method includes storing first and second sets of parameters in a register. Each set of parameters defines a storage transaction to store data to a computer readable medium or a retrieval transaction to retrieve data from the computer readable medium. The first storage or retrieval transaction is performed according to the first set of parameters. The second set of parameters is retrieved from the register automatically when the first storage or retrieval transaction is completed, without waiting for a further command from a control processor. The second storage or retrieval transaction is performed according to the retrieved second set of parameters. A system for performing the method and a computer readable medium containing pseudocode for generating an application specific integrated circuit that performs the method are provided.
Abstract:
In a method of accessing a single port memory, a plurality of read commands are received from a plurality of requestors for memory read access. A respective plurality of parameters corresponding to each of the plurality of read commands is stored in a memory read command queue. The parameters corresponding to one of the read commands are retrieved from the memory read command queue when the single port memory provides the data corresponding to that read command. One or more of the parameters from the memory read command queue are provided while providing the data from the memory.
Abstract:
Dielectric material compositions comprising HfO2 and a second compound are disclosed. The compositions are characterized by at least a part of the compositions being in a cubic crystallographic phase. Further, semiconductor based devices comprising such dielectric material compound and method for forming such compounds are disclosed.
Abstract translation:公开了包含HfO 2 N 2和第二化合物的介电材料组合物。 组合物的特征在于至少一部分组合物为立方晶相。 此外,公开了包含这种介电材料化合物的基于半导体的器件及其形成方法。
Abstract:
A method for eliminating contact bridge in a contact hole process is disclosed, wherein a cleaning menu comprising a multi-step adaptive protective thin film deposition process is provided, so that a stack adaptive protective thin film is formed on the sidewall of the chamber of the HDP CVD equipment. The stack adaptive protective thin film has good adhesivity, compactness and uniformity to protect the sidewall of the chamber of the HDP CVD equipment from being damaged by the plasma, and avoid the generation of defect particles, thereby improving the HDP CVD technical yield and eliminating the contact bridge phenomenon in the contact hole process.
Abstract:
A method for manufacturing a dummy gate in a gate-last process and a dummy gate in a gate-last process are provided. The method includes: providing a semiconductor substrate; growing a gate oxide layer on the semiconductor substrate; depositing bottom-layer amorphous silicon on the gate oxide layer; depositing an ONO structured hard mask on the bottom-layer amorphous silicon; depositing top-layer amorphous silicon on the ONO structured hard mask; depositing a hard mask layer on the top-layer amorphous silicon; forming photoresist lines on the hard mask layer, and trimming the formed photoresist lines so that the trimmed photoresist lines a width less than or equal to 22 nm; and etching the hard mask layer, the top-layer amorphous silicon, the ONO structured hard mask and the bottom-layer amorphous silicon in accordance with the trimmed photoresist lines, and removing the photoresist lines, the hard mask layer and the top-layer amorphous silicon.
Abstract:
The present invention discloses a method for manufacturing a semiconductor device, comprising: forming a gate stacked structure on a substrate; forming a source/drain region and a gate sidewall spacer at both sides of the gate stacked structure; depositing a Nickel-based metal layer at least in the source/drain region; performing a first annealing so that the silicon in the source/drain region reacts with the Nickel-based metal layer to form a Ni-rich phase of metal silicide; performing an ion implantation by implanting doping ions into the Ni-rich phase of metal silicide; performing a second annealing so that the Ni-rich phase metal silicide is transformed into a Nickel-based metal silicide, and meanwhile, forming a segregation region of the doping ions at an interface between the Nickel-based metal silicide and the source/drain region. The method according to the present invention performs the annealing after implanting the doping ions into the Ni-rich phase of metal silicide, thereby improving the solid solubility of the doping ions and forming a segregation region of highly concentrated doping ions, thus the SBH of the metal-semiconductor contact between the Nickel-based metal silica and the source/drain region is effectively reduced, the contact resistance is decreased, and the driving capability of the device is improved.