Abstract:
A measuring device for detecting measuring signals during either a scanning across a surface to determine a surface profile or a penetration movement of an indenter into a surface of the specimen to determine hardness, and, scanning with sufficient force to determine the scratch resistance of the specimen is described. All of the measurements can be done on the same specimen without unmounting the specimen from a holder. A camera mounted to the same framework as the measuring device enables further documentation of the specimen being tested.
Abstract:
A measuring device for detection pf measurement signals during a penetrating movement of a penetrating member into a surface of a test object or during a sensing movement of the penetrating member on the surface of the test object. The measuring device includes a housing which accommodates a force generating device and on which a holding element is arranged remote from the force generating device, which holding element is movable relative to the housing at least in one direction along a longitudinal axis of the housing and which accommodates the penetrating member. The measuring device also includes at least one first measuring element for measuring the penetration depth of the penetrating member into the surface of the test object or a traversing movement of the penetrating member along the longitudinal axis relative to the housing during a sensing movement on the surface of the test object, wherein a transmission element is provided which extends between the force generating device and the penetrating member.
Abstract:
A vacuum chuck for clamping workpieces, in particular wafers, and a measuring device and a method for checking workpieces by way of X-ray fluorescent radiation. The vacuum chuck has a clamping plate having a support surface, having at least one suction connection arranged on a base body for connecting to a negative-pressure device and for clamping the workpiece on the clamping plate by negative pressure received by the base body and having several suction grooves arranged in the clamping plate and are open towards the support surface. The support surface has concentric suction grooves having a suction opening to which a negative-pressure line is connected or which is connected to a work channel. Each suction groove having a separate negative pressure, which is separate to the adjacent suction groove, is selectively controlled by a control valve by a control for supplying the respective negative pressure in the respective suction groove.
Abstract:
Measuring probe for non-destructive measuring of the thickness of thin layers, in particular in cavities, which are accessible by an opening or on curved surfaces, with a measuring head, which includes at least one sensor element and at least one contact spherical cap, assigned to the sensor element on a surface, to be checked, of the cavity, and with a gripping element for positioning and guiding the measuring probe on and/or along the surface to be measured, wherein on the gripping element, a long, elastically yielding guide bar is provided, which accepts the at least one measuring head on its end opposing the gripping element, in such a way that it is moveable with at least one degree of freedom in relation to the guide bar.
Abstract:
An x-ray fluorescence analysis device, including an x-ray source for irradiating a sample with x-ray radiation, an x-ray detector for measuring x-ray fluorescence radiation emitted by the sample, and a camera for producing an optical control image of the irradiated measurement point of a sample by means of an optical mirror arranged at an angle in the beam path of the x-ray source, which optical mirror includes a carrier having a mirror layer provided on the carrier. In order to create an x-ray florescence device by means of which realistic control recordings of the sample to be analyzed, in particular of the sampled surface point, the optical mirror has a passage window for the x-ray radiation, which is formed by an opening in the carrier and a foil forming the mirror layer and covering the opening on an outer surface of the carrier.
Abstract:
The invention relates to a vacuum chuck for clamping workpieces (19), in particular wafers, and a measuring device and a method for checking workpieces, in particular wafers, by means of X-ray fluorescent radiation.
Abstract:
An optoelectronic semiconductor device includes an optoelectronic semiconductor layer sequence on a metal carrier element, which includes as a first component silver and as a second component a material having a lower coefficient of thermal expansion than silver, wherein the first and second components are intermixed in the metal carrier element.
Abstract:
The invention relates to a measuring probe for non-destructive measuring of the thickness of thin layers, in particular in cavities, which are accessible by an opening or on curved surfaces, with a measuring head, which comprises at least one sensor element and at least one contact spherical cap, assigned to the sensor element on a surface, to be checked, of the cavity, and with a gripping element for positioning and guiding the measuring probe on and/or along the surface to be measured, wherein on the gripping element, a long, elastically yielding guide bar is provided, which accepts the at least one measuring head on its end opposing the gripping element, in such a way that it is moveable with at least one degree of freedom in relation to the guide bar.
Abstract:
The invention relates to a measuring probe for measuring the thickness of thin layers, having a housing (14) with at least one sensor element (17), which is received at least slightly moveably along a longitudinal axis (16) and which comprises at least one first winding device (44), which has a magnetic pot core (41) arranged in the longitudinal axis (16) of the housing (14), and to whose central pin (42) a first and second coil (70, 71) are allocated, and having a spherical positioning cap (21) on the central pin (42) pointing towards the measuring surface of an object to be measured, which cap comprises a bearing surface (57) for fitting on a measuring surface, wherein a second winding device (48) is provided allocated to the spherical positioning cap (21), which device is formed from a discoidal or annular carrier (49) having at least one Archimedean coil (51), and a shield (83, 85) is provided at least partially between the first and second winding device (44, 48).
Abstract:
The invention relates to a measuring probe for non-destructive measuring of the thickness of thin layers on an object with a measuring head, which comprises at least one sensor element for contact on a measurement surface of an object, and with a support device for receiving the measuring head, which is at least partly surrounded by a housing, wherein at least one further measuring head, which is adjacent to and separated from the first measuring head, is arranged on the support device, which can be controlled independently of the first measuring head.