Abstract:
Disclosed herein is a direct current (DC) uninterruptible power supply system. The DC uninterruptible power supply system is connected to a DC power conversion system converting prevailing alternating current (AC) power into DC power, supplies the DC power to a load, charges an internal auxiliary power supply device with the DC power, and continuously supplies power to the load from the auxiliary power supply device while cutting off an electric connection with the DC power conversion system when the DC power conversion system short-circuits due to a leakage current or damage thereof or is disconnected.
Abstract:
Provided is a self-powered solar tracker, which is a solar tracker for adjusting the altitude of and horizontally rotating a solar collector panel such that the solar collector panel on which a plurality of solar cells are provided can face the sun, wherein the self-powered solar tracker comprises: an altitude adjustment optical sensor unit which has one or more first optical sensors formed by being uniformly spaced on the upper side of convex support surfaces to face the sun and one or more second optical sensors formed by being uniformly spaced on the lower side of the convex support surfaces, and which senses the sunlight so as to adjust the altitude of the solar collector panel; a horizontal rotation optical sensor unit which has one or more third optical sensors formed by being uniformly spaced on the left side of the convex support surfaces to face the sun and one or more fourth optical sensors formed by being uniformly spaced on the right side of the convex support surfaces, and which senses sunlight so as to horizontally rotate the solar collector panel; a passive element circuit which has one or more first comparison circuits for comparing the difference in the quantity of output light between the first optical sensors and the second optical sensors and one or more second comparison circuits for comparing the difference in the quantity of output light between the third optical sensors and the fourth optical sensors, and which outputs a driving value for adjusting the altitude of and horizontally rotating the solar collector panel in the direction having a larger light value; an altitude adjustment driving unit for receiving a driving power source from the solar cells of the solar collector panel and for adjusting the altitude of the solar collector panel according to the driving value of the passive element circuit; and a horizontal rotation driving unit for performing the horizontal rotation.
Abstract:
The present invention relates to a safety management system including a JSA draw-up module configured to display a screen for drawing up a job safety analysis worksheet for job safety analysis (JSA) and to draw up the job safety analysis worksheet on the basis of the information inputted by a user; a storage module configured to store the job safety analysis worksheet drawn up by the JSA draw-up module into a database (DB) and to store task hazard information drawn up for each unit task that can be referred for the job safety analysis worksheet into a database; and a inventory module configured to manage the job safety analysis worksheet and the task hazard information stored in the storage module and to create a new job safety analysis worksheet and new task hazard information in accordance with a request from the JSA draw-up module, and a method thereof.
Abstract:
A data equalizing circuit includes an equalizer configured to output data according to a control code; and a detection unit configured to divide the data into N number of calculation periods, count data transition frequencies for the N calculation periods, calculate dispersion values of the data transition frequencies for the N calculation periods, and output the control code corresponding to a largest dispersion value, in response to a counting interruption signal and a counting completion signal, wherein n is equal to or greater than 2, N is greater than n, and the data is divided to n number of unit intervals (UI), andwherein a phase shift of each of the calculation periods with respect to its corresponding UI is different from a phase shift of any of the other calculation periods with respect to its corresponding UI.
Abstract:
Exemplary embodiments of the present invention provide a light emitting diode package including a light emitting diode chip, a lead frame having a chip area on which the light emitting diode chip is arranged, and a package body supporting the lead frame. The lead frame includes a first terminal group arranged at a first side of the chip area and a second terminal group arranged at a second side of the chip area. The first terminal group and the second terminal group each include a first terminal connected to the chip area and a second terminal separated from the chip area, and the width of the first terminal is different than the width of the second terminal outside the package body.
Abstract:
A semiconductor integrated circuit includes a semiconductor chip, a plurality of first through-chip vias formed vertically through the semiconductor chip and configured to operate as an interface for a first power supply, and a first common conductive layer provided over the semiconductor chip and coupling the plurality of first through-chip vias to each other in a horizontal direction.
Abstract:
An apparatus for decoding residual data based on a bit plane and a method thereof, capable of achieving a significant reduction in data traffic between a memory and a functional module in a parallel decoding system, include a variable length decoding module configured to generate residual data for each macroblock from a bit stream, divide the residual data into groups, and generate a bit plane regarding each of the groups, and a variable length decoding memory configured to store the bit plane generated from the variable length decoding module and store the residual data of the groups according to a value of the bit plane.
Abstract:
A differential amplifying device includes a first differential amplifying unit that receives an input signal and a reference voltage. The first differential amplifying unit amplifies the input signal to generate an output signal when a sensing signal is at a first level. A second differential amplifying unit is configured to also receive the input signal and the reference voltage. The second differential amplifying unit amplifies the input signal to generate the output signal when the sensing signal is at a second level. The first and second differential amplifying units are configured to take advantage of transistor characteristics.
Abstract:
Provided is a table generation method of decoding a variable-length code. The table generation method includes receiving a variable-length code table and a search width N, generating a K-ary tree from the variable-length code table and the search width N, and generating an N-bit code table from the K-ary tree.
Abstract:
A semiconductor device stabilizes an operation of an input buffer. A semiconductor device includes an input potential detection unit, an input buffer, and a current sink unit. The input potential detection unit outputs a detection signal in response to a level of an input signal. The input buffer buffers the input signal by differentially amplifying the input signal through a first current sink unit. The current sink unit receives the detection signal, and in response to the detection signal, performs an auxiliary differential amplifying operation with respect to the input signal buffered by the input buffer.