Abstract:
An organic light emitting display and a method for making the same includes protection circuitry to avoid damage from static electricity. The display and method allow performing a lighting test during display manufacturing. The organic light emitting display includes a substrate, a display region on the transparent substrate with a matrix of pixels, and a signal transfer unit on the transparent substrate for transferring lighting test signals to the pixels. The signal transfer unit includes transistors for transferring the lighting test signals and a resistor coupled to drains and gates of the transistors for protecting the transistors against damage from static electricity.
Abstract:
Example embodiments of the present invention relate to methods of manufacturing a semiconductor device. Other example embodiments of the present invention relate to methods of manufacturing a semiconductor device having a gate electrode. In the method of manufacturing the semiconductor device, a gate electrode may be formed on a semiconductor substrate. Damage in the semiconductor substrate and a sidewall of the gate electrode may be cured, or repaired, by a radical re-oxidation process to form an oxide layer on the semiconductor substrate and the gate electrode. The radical re-oxidation process may be performed by providing a nitrogen gas onto the semiconductor substrate while increasing a temperature of the semiconductor substrate to a first temperature to passivate a surface of the gate electrode under a nitrogen gas atmosphere, providing an oxygen gas onto the semiconductor substrate while increasing the temperature from a first temperature to a second temperature to perform a first oxidation process and/or performing a second oxidation process at the second temperature.
Abstract:
A thermal electron emission backlight unit includes: first and second substrates arranged parallel to each other; first and second anode electrodes respectively arranged on inner surfaces between the first and second substrates; wall frames adapted to seal an inner space between the first and second substrates; a movable spacer holder and a fixed spacer holder arranged inside the wall frames to face each other; a plurality of spacers arranged between the first and second substrates and adapted to maintain a gap therebetween, wherein ends of the spacers are coupled to the movable and fixed spacer holders; a plurality of cathode electrodes arranged across the spacers between the first and second substrates; and a phosphor layer arranged on the second anode electrode. The spacers include tension spacers adapted to provide tension between the movable and fixed spacer holders by pushing the movable spacer holder away from the fixed spacer holder. The first substrate is adapted to pass white light therethrough.
Abstract:
A wireless access router for separately controlling a traffic signal and a control signal is provided. In a mobile communication access network structure, in order to optimally support a mobile communication terminal, a control signal and a traffic signal of a base station are divided, and a router is controlled by mobile communication system functions such as a mobility management function, a QoS management function, a session control of the terminal, a mobility control, and a QoS control function that are effectively processed. With a wireless access router having the divided control signal and traffic signal, it is expected the traffic concentration and a packet transmission delay can be prevented.
Abstract:
A system for providing fuel-efficient driving information for a vehicle includes a fuel-efficient driving area calculation unit and a display unit. The fuel-efficient driving area calculation unit calculates a variable fuel-efficient driving area, which is divided into economical, semi-economical, and uneconomical regions, depending on the increase or decrease of the speed of the vehicle, calculates a current fuel efficiency of the vehicle, receives information about the type and condition of a road from a GPS, and adjusts the regions in the fuel-efficient driving area to prompt the driver to increase or decrease the vehicle speed in advance. The display unit displays the fuel-efficient driving area using information calculated by the fuel-efficient driving area calculation unit, and indicates the current fuel efficiency using the regions.
Abstract:
Disclosed herein is a reduced graphene oxide doped with a dopant, and a thin layer, a transparent electrode, a display device and a solar cell including the reduced graphene oxide. The reduced graphene oxide doped with a dopant includes an organic dopant and/or an inorganic dopant.
Abstract:
Example embodiments relate to a poly-crystalline silicon (Si) thin film, a thin film transistor (TFT) formed from a poly-crystalline silicon (Si) thin film and methods of manufacturing the same. The method of manufacturing the poly-crystalline Si thin film includes forming an active layer formed of amorphous Si on a substrate, coating a gold nanorod on the active layer, and irradiating infrared rays onto the gold nanorod to crystallize the active layer.
Abstract:
The present invention relates to a software installation system and a method for copy protection. The software installation system includes a support server in which first installation data for installing software is stored; a recording medium in which an RFID tag storing URL information of the support server is installed and second installation data for installing the software is recorded; a computer having a computer interface unit and a data reading unit reading the second installation data recorded in the recording medium; an RFID reader for reading the RFID tag installed in the recording medium; a portable information processing terminal including a wireless communication unit accessing the support server through wireless Internet, a terminal interface unit connected to the computer interface unit of the computer, and a terminal controller downloading the first installation data and controlling the computer through the terminal interface unit and the computer interface unit.
Abstract:
A spacer supporting structure includes: a plurality of bar-shaped spacers adapted to maintain a gap between two panels; a first supporting member adapted to fix an end part of the spacer, the first supporting member being arranged on an edge of one of the two panels; a second supporting member arranged on another edge of the one of the two panels; and a plurality of elastic members arranged on the second supporting member, the plurality of elastic members adapted to apply a tensile force to the respective spacers by being coupled to the second ends of the spacers.
Abstract:
Disclosed are a heat transfer medium and a heat transfer method that uses the heat transfer medium. The heat transfer medium comprises a light-transparent substrate coated with a plurality of nano particles. The nano particles absorb light incident thereon to thereby produce heat, which is transferred to a target object to be heated. Nano particles can be applied onto a target object. After heating, the particles are removed by etching. Nano particles can be selectively applied to the light-transparent substrate or directly to a target object to be heat so as to localize heat-production and thus heat selective portions of the target object.