Abstract:
A thin film transistor substrate having a semiconductor layer including a low concentration region and a source region/drain region adjacent to the low concentration region at both sides of a channel region made of polysilicon; a gate insulating layer and a conductive layer on the substrate the conductive layer patterned to form a gate electrode.
Abstract:
An input signal receiver of a semiconductor device includes a gain control unit for outputting a gain control signal and a variable gain amplifier for amplifying external clock in response to the gain control signal, wherein the gain control signal determines a gain of the variable gain amplifier. Further, the input signal receiver includes a buffer whose input terminal is connected to an output terminal of the variable gain amplifier and output terminal is connected to another element of the semiconductor device.
Abstract:
An input signal receiver of a semiconductor device includes a gain control unit for outputting a gain control signal and a variable gain amplifier for amplifying external clock in response to the gain control signal, wherein the gain control signal determines a gain of the variable gain amplifier. Further, the input signal receiver includes a buffer whose input terminal is connected to an output terminal of the variable gain amplifier and output terminal is connected to another element of the semiconductor device.
Abstract:
There is provided a digital delay locked loop (DLL) which is capable of minimizing a jitter by predicting and detecting a maximum jitter timing. The digital delay locked loop includes: a clock generator for generating a source clock and a reference clock; a delay line provided with a plurality of unit delays, for delaying the source clock by a predetermined time; a delay model for reflecting a delay time of an actual internal circuit to an output of the delay line; a phase comparator for comparing a phase of the reference clock with a phase of a feedback clock outputted from the delay model; a jitter detector for detecting a maximum jitter timing in response to a phase comparison signal outputted from the phase comparator and generating a multi-delay enable signal; and a delay controller for controlling a delay amount of the delay line by unit-delay unit or multi-delay unit in response to the phase comparison signal and the multi-delay enable signal.
Abstract:
A microelectronic capacitor is formed by nitrating the surface of a conducting electrode on a microelectronic substrate. The nitrated surface of the conductive electrode is then oxidized. The nitrating and oxidizing steps collectively form a film of silicon oxynitride on the conductive electrode. A tantalum pentoxide film is then formed on the oxidized and nitrated surface of the conductive electrode. The tantalum pentoxide film may then be thermally treated in the presence of oxygen gas. High performance microelectronic capacitors are thereby provided.
Abstract:
A control method of a washing machine determines the amount of laundry placed in a drum, verifies whether the measured amount of laundry is accurate, and sets control data in the washing machine based on the verified amount of laundry. Also the control method of the washing machine corrects control data set according to the amount of laundry based on kind of the laundry classified according to absorptance of the laundry.
Abstract:
A display apparatus includes a first pixel, a second pixel, a first selector, and a second selector. The first pixel includes first sub-pixels connected to a first gate line and respectively connected to corresponding data lines included in a first data line group and the second pixel includes second sub-pixels connected to a second gate line adjacent to the first gate line and respectively connected to corresponding data lines, one of which is included in a second data line group different from the first data line group. The first selector applies first data signals to one of odd-numbered data lines, and the second selector applies second data signals having a different polarity from the second data signals to one of even-numbered data lines.
Abstract:
An LCD and a driving method thereof include: data writing for applying a common voltage and a data voltage to a plurality of pixels; and sustaining for applying a shifted common voltage shifted by a predetermined level from the common voltage to the plurality of pixels for a sustain period during which the plurality of pixels emit light, corresponding to the data voltage. The shifted common voltage is shifted to an opposite polarity of a polarity of a gate-off voltage applied to the plurality of pixels to float the plurality of pixels. During a sustain period, a gate-source voltage of the switching transistor can be increased, and accordingly an influence due to the leakage current can be minimized, thereby preventing image deterioration. Further, since capacitance of the sustain capacitor can be reduced so that power consumption of the LCD can be reduced.
Abstract:
A liquid crystal display apparatus and a method of driving the liquid crystal display apparatus, which commonly boosts pixels of a first group and commonly boosts pixels of a second group. The liquid crystal display apparatus includes a first group of pixels for displaying an image and a second group of pixels for displaying an image. Each pixel of the first and second groups includes a storage capacitor for storing a data voltage. The liquid crystal display apparatus further includes a first storage common voltage line connected to storage capacitors of the pixels of the first group of pixels, a second storage common voltage line connected to storage capacitors of the pixels of the second group of pixels. A first storage common voltage is supplied to the pixels of the first group through the first storage common voltage line, and a second storage common voltage is supplied to the pixels of the second group through the second storage common voltage line.
Abstract:
The present invention relates to a building that uses composite light-weight panels for structure and a construction method therefor, more particularly, to a building constructed without pillars using composite light weight panels for structure and a construction method therefor, wherein the building comprises: a steel floor made out of sectional steel for example; walls which are formed by joining composite light-weight panels for structure having steel structure frames installed at corners to the steel floor by welding or joining means, neighboring steel structure frames being joined together by welding or joining means to form walls; roof frames which are constituted by a steel structure and have a truss structure to be positioned on the top of the walls and joined to the wall panels by welding or joining means; wall inner/outer coverings applied to the inner/outer peripherals of the walls; and roof coverings applied to the outer peripheral face of the roof frame.