Abstract:
A locking mechanism (10) is produced for holding a sliding door in the open position and has a Bowden cable (22) which acts on its locking element (20), a moving-carriage support (14) and a moving carriage (18), which move relative to one another during the closing of the door. In order to disengage the door handles from the locking mechanism when the sliding door is closed and therefore in order to reduce the actuating forces for unlocking the door lock, the moving-carriage support (14), during the closing movement, shifts a driver (34) which is guided on the moving carriage (14) and carries along the locking element (20) in the direction of its unlocking position. By this, the Bowden cable (22) is moved in its actuating direction, thereby enabling the door handles to be disengaged.
Abstract:
A method for preparing a spiral wound filtration module is provided. The module has a central permeate carrier tube. The method includes winding at least one filtration leaf about the permeate carrier tube. The filtration leaf includes a first membrane sheet, a permeate carrier sheet, and a second membrane sheet. The winding step creates an end face extending radially outwardly from the permeate tube on each end thereof. After winding, the filtration module is maintained in a wound state. An adhesive is then supplied to each end face and a vacuum is applied through each of the permeate tube. While the vacuum is applied, the permeate tube and filtration leaf assembly are spun in a centrifuge until the adhesive has solidified. After spinning, each end face of the module is severed at a distance between the level of adhesive along the feed spacer screen and the level of adhesive along the permeate carrier sheet.
Abstract:
A motor vehicle door lock with a central locking system drive and central locking system lever (3) driven by it, in which the central locking system drive is electromechanically operable in a reversible manner and has a drive element (4) with an eccentrically arranged driving lug (5) which can move in both directions of rotation in a circular path, a central locking system lever (3) that is pivotable about a pivot axis (7) which is parallel to the axis of rotation (6) of the drive element (4) and has a driving receiver (8) for driving lug (5) which is much wider than driving lug (5). The central locking system lever (3) can be swung into an unlocked position (E) and a locked position (V), by means of both the driving lug (5) and by manual operation in purely mechanically manner independently and unhindered by the driving lug. This motor vehicle door lock is characterized in that only approximately one half of the circular path of the driving lug (5) runs in the driving receiver (8) and the other half runs outside of the driving receiver (8), the axis of rotation (6) of the drive element (4) lies roughly at the open end of the driving receiver (8), and the driving lug (5) has rest positions outside of the driving receiver (8) and enters the driving receiver (8) only for movement of central locking system lever (3).
Abstract:
The present invention relates to a method for removing an organic compound from an aqueous solution, comprising the steps of providing the aqueous solution which contains the organic compound, and a hydrophobic organic solution, where the latter comprises a liquid hydrophobic cation exchanger, contacting the aqueous solution and the hydrophobic organic solution, and separating off the hydrophobic organic solution from the aqueous solution, wherein the liquid hydrophobic cation exchanger is a saturated alkanoic acid having at least one alkyl substituent, where the organic compound is an organic compound having at least one positive charge and a neutral or positive total charge.
Abstract:
The invention relates to a method for removing an organic compound having one or more positive charges from an aqueous solution. Said method consists of the following steps a) the aqueous solution containing the organic compound, and a hydrophobic organic solution which contains a hydrophobic liquid cation exchanger having one or more negative charges and a negative total charge, are provided, b) the aqueous solution and the organic solution are brought into contact with each other and c) the organic solution is separated from the aqueous solution.
Abstract:
The invention provides a method to produce primary diamines by catalytic conversion of diols having a linear main chain of from 4 to 31 carbon atoms into the corresponding diamines. The reaction is conducted in a liquid or supercritical phase and is catalyzed by a homogeneous ruthenium-containing complex. The primary diamines obtained may be suitable for polyamide syntheses.
Abstract:
The invention relates to a method for producing aldehyde functional compounds by a cross-metathesis reaction of an olefinic compound having at least one hydroxy group and at least one C—C double bond with at least one at least monounsaturated fatty acid or at least one at least monounsaturated fatty acid derivative, in the presence of a metathesis catalyst at a maximum temperature of 180° C. and in the presence of at least one reagent that acts as a protective group-forming compound in relation to the aldehyde group of the aldehyde functional compounds.
Abstract:
The invention relates to a method for producing α/β-unsaturated dicarboxylic acids and the corresponding saturated dicarboxylic acids, whereby the corresponding cycloalkene and acrylic acid are reacted with a ruthenium catalyst by way of a metathesis reaction at high substrate concentrations until the reaction takes place in substance, the resulting dicarboxylic acid being precipitated.
Abstract:
The invention concerns a process for purification of an acidic monomer having a double bond, as well as a device for synthesis of an acidic monomer having a double bond, a process for producing an acidic monomer having a double bond, an acid monomer having a double bond and obtainable by this process, fibers, formed bodies, films, foams, superabsorbent polymers and other special polymers based on or containing this acidic monomer, the use of this acidic monomer in or for producing fibers, formed bodies, films, foams, superabsorbent polymers or other special polymers.
Abstract:
Settling times of a catalyst in the epoxidation of a cyclic, at least monounsaturated alkene are improved by a method, comprising epoxidizing a cyclic, at least monounsaturated alkene having from 8 to 20 carbon atoms in the ring in a reaction medium containing an oxidant and a catalyst system comprising at least one metal of Groups 4, 5 and 6 of the Periodic Table of the Elements, phosphoric acid and a phase transfer catalyst and a cyclic alkane having from 8 to 20 carbon atoms in the ring, which corresponds to the alkene reactant, as settling accelerator in the epoxidation reaction.