Abstract:
A tibia cutting assembly includes a tibia cut guide with at least one cut slot. A guide rod has a guide holder mountable to the cut guide at a first end of the guide rod, and a second end of the guide rod is mountable non-invasively about a skin of a patient. The guide rod is extendable in length to displace the tibia cut guide and adjust a position thereof with respect to a tibia of the patient. The guide holder cooperates with the tibia cut guide to adjust an orientation of the tibia cut guide. A first inertial sensor is mountable to the guide holder and is displaceable therewith, and a second inertial sensor is mountable to the guide rod at the second end thereof.
Abstract:
A computer-assisted surgery (CAS) navigation assembly comprises a micro-electromechanical sensor (MEMS) navigation unit having one or more MEMS to provide at least orientation data. A support receives the MEMS navigation unit therein, the support being adapted to be mounted on the instrument in a fixed orientation relative to established navigated features of the instrument. At least two mating ball-in-socket features are disposed between the MEMS navigation unit and the support at opposed ends thereof for releasably engaging the MEMS navigation unit in precise orientational alignment within the receptacle, the at least two mating ball-in-socket features comprising catches aligned along an axis extending between the opposed ends, at least one of the catches being a biased catch. A method of connecting a MEMS navigation unit with a mating support fixed to a CAS instrument navigated by the CAS system is also provided.
Abstract:
A method for determining a mechanical axis of a tibia using a tibial digitizer is disclosed. The method includes: determining an upper reference point on a tibial plateau corresponding to an entry point of the mechanical axis; fastening an upper mounting end of the tibial digitizer to the tibial plateau at the upper reference point; and fastening a lower mounting end of the tibial digitizer to medial and lateral malleoli of the ankle, by inwardly displacing opposed caliper arms of a self-centering malleoli engaging mechanism toward each other in a common plane until the caliper arms abut the malleoli. A lower reference point located at a midpoint between the medial and lateral malleoli is then determined by identifying a corresponding midpoint between the caliper arms when they are clamped onto the medial and lateral malleoli.
Abstract:
A computer-assisted surgery system comprises a first surgical device with a tracking unit tracked during a surgical procedure and adapted to perform a first function associated to the surgical procedure. A second surgical device is adapted to perform a second function associated to the surgical procedure. A triggered unit is triggered when the first surgical device and the second surgical device reach a predetermined proximity relation. A surgical procedure processing unit tracks the first surgical device. A trigger detector detects a triggering of the triggered unit. A CAS application operates steps of a surgical procedure. A controller commands the CAS application to activate a selected step associated with the second function in the surgical procedure when the trigger detector signals a detection. An interface displays information about the selected step in the surgical procedure.
Abstract:
A computer-assisted surgery (CAS) navigation assembly comprises a micro-electromechanical sensor (MEMS) navigation unit having one or more MEMS to provide at least orientation data. A support receives the MEMS navigation unit therein, the support being adapted to be mounted on the instrument in a fixed orientation relative to established navigated features of the instrument. At least two mating ball-in-socket features are disposed between the MEMS navigation unit and the support at opposed ends thereof for releasably engaging the MEMS navigation unit in precise orientational alignment within the receptacle, the at least two mating ball-in-socket features comprising catches aligned along an axis extending between the opposed ends, at least one of the catches being a biased catch. A method of connecting a MEMS navigation unit with a mating support fixed to a CAS instrument navigated by the CAS system is also provided.
Abstract:
A computer-assisted surgery system comprises instruments adapted to be used to perform tasks related to surgery. A reference device is in a fixed relation to a bone. A rotating magnet creates a magnetic field plane, the rotating magnet being connected to one of the instrument and the reference device. A magnetometer on the other of the instrument and the reference device produces signals as a function of at least its orientation relative to the magnetic field plane. A processing unit tracks said orientation of the instrument relative to the bone using said signals from the magnetometer subjected to the magnetic field plane.
Abstract:
There is described a system and a method for assisting a user manipulating an object during a surgery, the method comprising: tracking the object in a sterile field in which surgery is being performed at a location using a tracking device which generates tracking data; processing the tracking data using a processing device located outside the sterile field to generate position and orientation information related to the object; and sending the position and orientation information related to the object to a displaying device positioned in the sterile field adjacent to the location at which the surgery is being performed, for display to the user.
Abstract:
The disclosed device for verifying a hip-knee-ankle angle includes a mounting base having a planar abutting surface adapted for direct abutting against a resected surface on a distal femur, and a first inertial sensor in communication with a computer assisted surgery (CAS) system to determine an orientation of the mounting base and to digitize a mechanical axis of the femur. A visual alignment guide element is pivotably mounted to the mounting base such that the angular position of the visual alignment guide element is adjustable so as to be visually aligned with a mechanical axis of a tibia. A difference between orientations of the mounting base and the visual alignment guide is calculated by the computer assisted surgery system to determine the hip-knee-ankle angle. The visual alignment guide may include a second inertial sensor and/or a laser emitting element.
Abstract:
A method for determining a mechanical axis of a tibia using a tibial digitizer is disclosed. The method includes: determining an upper reference point on a tibial plateau corresponding to an entry point of the mechanical axis; fastening an upper mounting end of the tibial digitizer to the tibial plateau at the upper reference point; and fastening a lower mounting end of the tibial digitizer to medial and lateral malleoli of the ankle, by inwardly displacing opposed caliper arms of a self-centering malleoli engaging mechanism toward each other in a common plane until the caliper arms abut the malleoli. A lower reference point located at a midpoint between the medial and lateral malleoli is then determined by identifying a corresponding midpoint between the caliper arms when they are clamped onto the medial and lateral malleoli.
Abstract:
The disclosed device for verifying a hip-knee-ankle angle includes a mounting base having a planar abutting surface adapted for direct abutting against a resected surface on a distal femur, and a first inertial sensor in communication with a computer assisted surgery (CAS) system to determine an orientation of the mounting base and to digitize a mechanical axis of the femur. A visual alignment guide element is pivotably mounted to the mounting base such that the angular position of the visual alignment guide element is adjustable so as to be visually aligned with a mechanical axis of a tibia. A difference between orientations of the mounting base and the visual alignment guide is calculated by the computer assisted surgery system to determine the hip-knee-ankle angle. The visual alignment guide may include a second inertial sensor and/or a laser emitting element.