Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a capping layer over the high-k dielectric layer in the first region, forming a first metal layer over capping layer in the first region and over the high-k dielectric in the second region, thereafter, forming a first gate stack in the first region and a second gate stack in the second region, protecting the first metal layer in the first gate stack while performing a treatment process on the first metal layer in the second gate stack, and forming a second metal layer over the first metal layer in the first gate stack and over the treated first metal layer in the second gate stack.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first active region and a second active region, providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a first capping layer and a second capping layer over the high-k dielectric layer, the first capping layer overlying the first region and the second capping layer overlying the second region, forming a layer containing silicon (Si) over the first and second capping layers, forming a metal layer over the layer containing Si, and forming a first gate stack over the first region and a second gate stack over the second active region. The first gate stack includes the high-k dielectric layer, the first capping layer, the layer containing Si, and the metal layer and the second gate stack includes the high-k dielectric layer, the second capping layer, the layer containing Si, and the metal layer.
Abstract:
A method is provided that allows for maintaining a desired equivalent oxide thickness (EOT) by reducing the thickness of an interfacial layer in a gate structure. An interfacial layer is formed on a substrate, a gate dielectric layer such as, a high-k gate dielectric, is formed on the interfacial layer. A gettering layer is formed on the substrate overlying the interfacial layer. The gettering layer may function to getter oxygen from the interfacial layer such that the interfacial layer thickness is decreased and/or restricted from growth.
Abstract:
A fin-FET device and a method for fabrication thereof both employ a bulk semiconductor substrate. A fin and an adjoining trough are formed within the bulk semiconductor substrate. The trough is partially backfilled with a deposited dielectric layer to form an exposed fin region and an unexposed fin region. A gate dielectric layer is formed upon the exposed fin region and a gate electrode is formed upon the gate dielectric layer. By employing a bulk semiconductor substrate the fin-FET device is fabricated cost effectively.
Abstract:
A semiconductor device is disclosed that includes: a substrate; a first dielectric layer formed over the substrate and formed of a first high-k material, the first high-k material selected from the group consisting of HfO2, HfSiO, HfSiON, HfTaO, HfTiO, HfTiTaO, HfAlON, and HfZrO; a second dielectric layer formed over the first dielectric layer and formed of a second high-k material, the second high-k material being different than the first high-k material and selected from the group consisting of HfO2, HfSiO, HfSiON, HfTaO, HfTiO, HfTiTaO, HfAlON, and HfZrO; and a metal gate formed over the second dielectric layer. The first dielectric layer includes ions selected from the group consisting of N, O, and Si.
Abstract:
A plasma processing operation uses a gas mixture of N2 and H2 to both remove a photoresist film and treat a low-k dielectric material. The plasma processing operation prevents degradation of the low-k material by forming a protective layer on the low-k dielectric material. Carbon from the photoresist layer is activated and caused to complex with the low-k dielectric, maintaining a suitably high carbon content and a suitably low dielectric constant. The plasma processing operation uses a gas mixture with H2 constituting at least 10%, by volume, of the gas mixture.
Abstract:
A semiconductor device is disclosed that includes: a substrate; a first high-k dielectric layer; a second high-k dielectric layer formed of a different high-k material; and a metal gate. In another form, a method of forming a semiconductor device is disclosed that includes: providing a substrate; forming a first high-k dielectric layer above the substrate; forming a second dielectric layer of a different high-k material above the first dielectric layer; and forming a gate structure above the second dielectric layer. In yet another form, a method of forming a semiconductor device is disclosed that includes: providing a substrate; forming an interfacial layer above the substrate; forming a first high-k dielectric layer above the interfacial layer; performing a nitridation technique; performing an anneal; forming a second high-k dielectric layer of a different high-k material above the first dielectric layer; and forming a metal gate structure above the second dielectric layer.
Abstract:
Methods and structures for critical dimension or profile measurement are disclosed. The method provides a substrate having periodic openings therein. Material layers are formed in the openings, substantially planarizing a surface of the substrate. A scattering method is applied to the substrate with the material layers for critical dimension (CD) or profile measurement.
Abstract:
This invention is directed to a device of “a tutorial and wits-increment auto-drive toy car”, mainly consists of a functional board and a shell body, whereas multiple buttons set up on the functional board. Each electronic component has button-holes for assembling together on the functional board. In accordance with the electronic circuit layout and forming a control circuit to produce the function, which can be controlled by sound, light, infrared or wireless tool, and then leads the directions of the car.
Abstract:
Low-k organosilicate dielectric material can be exposed to a series of reagents, including a halogenation reagent, an alkylation reagent, and a termination reagent, in order to reverse degradation of dielectric properties caused by previous processing steps.