摘要:
In a normal operation, an output of a differential amplifier for amplifying a difference between first and second bit cells is output as readout data. In a test mode, when a first control signal is set to be “H”, the output of the differential amplifier is fixed to be “H” and thus an output of the first bit cell is read out through gates.
摘要:
A semiconductor integrated circuit device includes: first and second nonvolatile memory elements; a first amplifier for amplifying an output signal from the first nonvolatile memory element to output the amplified signal; and a second amplifier for outputting to the first amplifier a control signal generated by amplifying an output signal from the second nonvolatile memory element. The second amplifier fixes the output signal from the first amplifier at a high potential or a low potential based on data stored in the second nonvolatile memory element.
摘要:
A semiconductor device according to the present invention operates in response to a control clock generated by a control clock generating circuit. The control clock generating circuit includes a DLL circuit detecting an external clock period by a synchronous operation, a reference clock pulse generating circuit activated in synchronization with an external clock to generate a reference dock pulse having a pulse width in accordance with the external clock period, a delay circuit delaying stepwise the reference clock pulse per unit delay time in accordance with the external clock period, and an internal control clock generating circuit setting activation and inactivation timing of the control clock based on the delayed clock pulse.
摘要:
A frequency switching circuit is controlled by a low address strobe signal XRAS. A sub-boosted power supply generating circuit is driven at a low frequency generated by a first oscillating circuit during the standby of a DRAM, and at a high frequency generated by a second oscillating circuit during the operation of the DRAM. The sub-boosted power supply generating circuit is driven in a shorter cycle during the operation than during the standby. Consequently, charges are supplied to a booster power source to boost the voltage level thereof. Accordingly, even if the period of the operation state is increased, a drop in voltage level of the boosted power supply caused by a transistor off leak current and a junction leak current can be controlled. Thus, the malfunction of a circuit can be prevented from occurring due to the drop in voltage level of the boosted power supply. The drop in voltage level of the boosted power supply can be controlled during the operation of the DRAM so that it is possible to implement a boosted power supply generating circuit which can prevent the malfunction of the circuit from occurring.
摘要:
A semiconductor device includes an electric fuse circuit and a program protective circuit. The electric fuse circuit includes a fuse element and a transistor connected together in series and placed between a program power supply and a grounding, and controlling sections. The program protective circuit is placed in parallel with the electric fuse circuit and between the program power supply and the grounding. When a surge voltage is applied between the program power supply and the grounding, the foregoing structure allows a part of a surge electric current can flow through the program protective circuit.
摘要:
In a nonvolatile semiconductor memory device storing data by accumulating charges in a floating gate, memory units, each of which includes a first MOS transistor as a read device, a bit cell composed of a first capacitor as a capacitance coupling device and a second capacitor as an erase device, and a decode device including a second MOS transistor and a third MOS transistor, are arranged in array. This attains nonvolatile memory capable of bit by bit selective erase arranged in array to thus reduce the core area remarkably.
摘要:
A nonvolatile semiconductor memory device for storing data by accumulating charge in a floating gate includes a plurality of MOS transistors sharing the floating gate. In the device, a PMOS is used for coupling during writing and an n-type depletion MOS (DMOS) is used for coupling during erasure. Coupling of channel inversion capacitance by the PMOS is used for writing and coupling of depletion capacitance by the n-type DMOS is used for erasure, thereby increasing the erase speed without increase of area, as compared to a conventional three-transistor nonvolatile memory element.