Abstract:
An information storage device includes a magnetic track and a magnetic domain wall moving unit. The magnetic track has a plurality of magnetic domains and a magnetic domain wall between each pair of adjacent magnetic domains. The magnetic domain wall moving unit is configured to move at least the magnetic domain wall. The information storage device further includes a magneto-resistive device configured to read information recorded on the magnetic track. The magneto-resistive device includes a pinned layer, a free layer and a separation layer arranged there between. The pinned layer has a fixed magnetization direction. The free layer is disposed between the pinned layer and the magnetic track, and has a magnetization easy axis, which is non-parallel to the magnetization direction of the pinned layer.
Abstract:
An oscillator generates a signal using precession of a magnetic moment of a magnetic domain wall. The oscillator includes a free layer having the magnetic domain wall and a fixed layer corresponding to the magnetic domain wall. A non-magnetic separation layer is interposed between the free layer and the fixed layer.
Abstract:
A magnetic structure includes a first portion and a plurality of second portions. The first portion extends in a first direction. The plurality of second portions extend from ends of the first portion in a second direction. The first and second directions are perpendicular to one another. Two magnetic domains magnetized in directions opposite to each other and a magnetic domain wall between the magnetic domains are formed in the magnetic structure.
Abstract:
Provided is a method of manufacturing a nano size-gap electrode device. The method includes the steps of: disposing a floated nano structure on a semiconductor layer; forming a mask layer having at least one opening pattern to intersect the nano structure; and depositing a metal on the semiconductor layer exposed through the opening pattern to form an electrode, such that a nano size-gap is provided under the nano structure by the nano structure.
Abstract:
Provided may be a semiconductor device using magnetic domain wall movement. The semiconductor device may include a magnetic track having a plurality of magnetic domains and a thermal conductive insulating layer configured to contact the magnetic track. The thermal conductive insulating layer may prevent or reduce the magnetic track from being heated due to a current supplied to the magnetic track.
Abstract:
Provided is a tri-gated molecular field effect transistor (FET) and a method of fabricating the same. The tri-gated molecular field effect transistor includes a gate electrode formed on a substrate and having grooves in a source region, a drain region and a channel region, and at least one molecule inserted between the source and drain electrodes in the channel region. The effects of the gate voltage on electrons passing through the channel can be maximized, and a variation gain of current supplied between the source and drain electrodes relative to the gate voltage can be greatly increased. Thus, a molecular electronic circuit having high functionality and reliability can be obtained.
Abstract:
Provided is a magnetic memory device. The magnetic memory device includes a first magnetization layer, a tunnel barrier disposed on the first magnetization layer, a second magnetization layer disposed on the tunnel barrier, and a spin current assisting layer disposed on at least a portion of a sidewall of the second magnetization layer.
Abstract:
Magnetic memory devices may include a substrate, a circuit device on the substrate, a plurality of lower electrodes electrically connected to the circuit device, a magnetic tunnel junction (MTJ) structure commonly provided on the plurality of the lower electrodes, and a plurality of upper electrodes on the MTJ structure. The MTJ structure may include a plurality of magnetic material patterns and a plurality of insulation material patterns separating the magnetic material patterns from each other.
Abstract:
Magnetoresistive elements, and memory devices including the same, include a free layer having a changeable magnetization direction, a pinned layer facing the free layer and having a fixed magnetization direction, and an auxiliary element on a surface of the pinned layer. The auxiliary element has a width smaller than a width of the pinned layer, and a magnetization direction fixed to a direction the same as a direction of the fixed magnetization direction of the pinned layer.
Abstract:
Magnetoresistive elements, and memory devices including the same, include a free layer having a changeable magnetization direction, a pinned layer facing the free layer and having a fixed magnetization direction, and an auxiliary element on a surface of the pinned layer. The auxiliary element has a width smaller than a width of the pinned layer, and a magnetization direction fixed to a direction the same as a direction of the fixed magnetization direction of the pinned layer.