摘要:
Provided are a nanowire sensor and a method of manufacturing the same. The nanowire sensor includes: a sensing target system comprising a target element to be detected; two electrodes separated from each other contained in the sensing target system; vanadium oxide (V2O5) nanowires incorporated in the sensing target system and attached to the two electrodes; and a measuring unit for measuring a change in resistance of the nanowires as the nanowires detect the target element.
摘要翻译:提供一种纳米线传感器及其制造方法。 纳米线传感器包括:感测目标系统,包括要检测的目标元件; 包含在感测目标系统中的彼此分开的两个电极; 氧化钒(V 2 O 5 O)纳米线并入感测目标系统并连接到两个电极上; 以及测量单元,用于当纳米线检测到目标元件时测量纳米线的电阻变化。
摘要:
Provided is a method of manufacturing a nano size-gap electrode device. The method includes the steps of: disposing a floated nano structure on a semiconductor layer; forming a mask layer having at least one opening pattern to intersect the nano structure; and depositing a metal on the semiconductor layer exposed through the opening pattern to form an electrode, such that a nano size-gap is provided under the nano structure by the nano structure.
摘要:
Provided is a tri-gated molecular field effect transistor (FET) and a method of fabricating the same. The tri-gated molecular field effect transistor includes a gate electrode formed on a substrate and having grooves in a source region, a drain region and a channel region, and at least one molecule inserted between the source and drain electrodes in the channel region. The effects of the gate voltage on electrons passing through the channel can be maximized, and a variation gain of current supplied between the source and drain electrodes relative to the gate voltage can be greatly increased. Thus, a molecular electronic circuit having high functionality and reliability can be obtained.
摘要:
Provided is a method for manufacturing a nano-gap electrode device comprising the steps of: forming a first electrode on a substrate; forming a spacer on a sidewall of the first electrode; forming a second electrode on an exposed substrate at a side of the spacer; and forming a nano-gap between the first electrode and the second electrode by removing the spacer, whereby it is possible to control the nano-gap position, width, shape, and etc., reproducibly, and manufacture a plurality of nano-gap electrode devices at the same time.
摘要:
A tri-gated molecular field effect transistor includes a gate electrode formed on a substrate and having grooves in a source region, a drain region and a channel region, and at least one molecule inserted between the source and drain electrodes in the channel region. The effects of the gate voltage on electrons passing through the channel can be maximized, and a variation gain of current supplied between the source and drain electrodes relative to the gate voltage can be greatly increased. Thus, a molecular electronic circuit having high functionality and reliability can be obtained.
摘要:
Provided is a method of manufacturing a nano size-gap electrode device. The method includes the steps of: disposing a floated nano structure on a semiconductor layer; forming a mask layer having at least one opening pattern to intersect the nano structure; and depositing a metal on the semiconductor layer exposed through the opening pattern to form an electrode, such that a nano size-gap is provided under the nano structure by the nano structure.
摘要:
Provided is a method for manufacturing a nano-gap electrode device comprising the steps of: forming a first electrode on a substrate; forming a spacer on a sidewall of the first electrode; forming a second electrode on an exposed substrate at a side of the spacer; and forming a nano-gap between the first electrode and the second electrode by removing the spacer, whereby it is possible to control the nano-gap position, width, shape, and etc., reproducibly, and manufacture a plurality of nano-gap electrode devices at the same time.
摘要:
A field emission display device is disclosed. The device comprises an upper plate and a lower plate that are vacuum-packaged in parallel, wherein the lower plate is composed of matrix-addressable pixels, wherein the pixel formed on an insulation substrate comprises a field emitter array, a control thin-film transistor having a drain connected to an emitter electrode of the emitter array, and an addressing thin-film transistor having a drain connected to a gate electrode of the control thin-film transistor. Designing the control thin-film transistor to have a large parasitic capacitance between the source and the gate, one can obtain an active matrix display having a memory function and eliminate a conventional complex fabricating process of a memory capacitor, thereby simplify a panel fabricating process remarkably and largely increase the aperture ratio of a pixel. Furthermore, in the present invention, introducing glass for a substrate material instead of conventional single crystal silicon wafer, one can cheaply produce a large size panel and easily carry out a vacuum packaging that is indispensable for fabricating a field emission display.
摘要:
A field emission device using carbon nanotubes grown in a direction parallel to a substrate and a method of manufacturing a high definition field emission display using an edge emitting luminescent thin film. The device includes a process of selectively depositing a metal catalyst on a sidewall of the pattern to grow the carbon nanotube in a direction parallel to the metal catalyst and a process of attaching the grown carbon nanotube on the main board by application process, so that it can be freely applied in a subsequent process. The device employs a carbon nanotube field emission emitter and an edge emitting in a high fine luminescent body deposited in a thin film type. Thus, a close relationship with the substrate can be maintained due to the horizontally grown carbon nanotubes, a subsequent semiconductor process can be freely applied using a thin film type luminescent body, and a high fine field emission display can be thus manufactured.
摘要:
A graphene oxide memory device includes a substrate, a lower electrode disposed on the substrate, an electron channel layer disposed on the lower electrode by using a graphene oxide, and an upper electrode disposed on the electron channel layer.