Abstract:
Optical components may be precisely positioned in three dimensions with respect to one another. A bonder which has the ability to precisely position the components in two dimensions can be utilized. The components may be equipped with contacts at different heights so that as the components come together in a third dimension, their relative positions can be sensed. This information may be fed back to the bonder to control the precise alignment in the third dimension.
Abstract:
A polymer well may be formed over a thermal oxide formed over a semiconductor substrate in one embodiment. The well may include a waveguide and a pair of heaters adjacent the waveguide. Each heater may be mounted on a platform of insulating material to reduce heat loss through the substrate and the thermal oxide, in one embodiment.
Abstract:
Optical components may be integrated into planar light circuits. For example, thin film filters may be integrated through trenches in planar light circuits to achieve demultiplexing of at least two multiplexed optical wavelengths. An optical waveguide may be interfaced with a laser or a light detector through a mode converter formed as a trench in the planar light circuit. The mode converter may have a curved surface to achieve mode conversion.
Abstract:
Optical components may be precisely positioned in three dimensions with respect to one another. A bonder which has the ability to precisely position the components in two dimensions can be utilized. The components may be equipped with contacts at different heights so that as the components come together in a third dimension, their relative positions can be sensed. This information may be fed back to the bonder to control the precise alignment in the third dimension.
Abstract:
Methods for fabricating merged magnetic heads, employing an inductive write head and a magnetoresistive (MR) read head which share portions of the overall magnetic structure, provide for accurate definition of the write track width and for improved alignment of the write gap and the read gap. The method includes accurately forming and defining the nonmagnetic write gap prior to fabricating the inductive write coil structure and subsequently formed higher topology elements. The methods provide for better control of the widths of the top pole member and the bottom pole member, thereby resulting in substantially equal widths for these pole members.
Abstract:
A plurality of transducer elements are formed. For each of the plurality of transducer elements, an electrode of the transducer element is formed on a first side of a support layer. A piezoelectric element of the transducer element is formed on the first side of the support layer. An interconnect of the transducer element is formed in the support layer. The support layer is thinned to expose a second side of the support layer. The interconnects of the plurality of transducer elements extend between the first side and the second side of the support layer. The second side of the support layer is bonded to a flexible layer with an adhesive material. Conductive fillers are disposed in the adhesive material. The interconnects of the plurality of transducer elements are each electrically coupled via the conductive fillers to the corresponding interconnect extending through the flexible layer.
Abstract:
Techniques and mechanisms to provide mechanical support for a micromachined piezoelectric transducer array. In an embodiment, a transducer array includes transducer elements each comprising a respective membrane portion and a respective supporting structure disposed on or around a periphery of that membrane portion. The transducer elements are initially formed on a sacrificial wafer, wherein supporting structures of the transducer elements facilitate subsequent removal of the sacrificial wafer and/or subsequent handling of the transducer elements. In another embodiment, a polymer layer is disposed on the transducer elements to provide for flexible support during such subsequent handling.
Abstract:
Techniques and structures for providing flexibility of a micromachined transducer array. In an embodiment, a transducer array includes a plurality of transducer elements each comprising a piezoelectric element and one or more electrodes disposed in or on a support layer. The support layer is bonded to a flexible layer including a polymer material, wherein flexibility of the transducer array results in part from a total thickness of a flexible layer. In another embodiment, flexibility of the transducer array results in part from one or more flexural structures formed therein.
Abstract:
An energy assisted magnetic recording (EAMR) disk drive comprises a suspension and a slider having a back side, a laser-facing surface, and an air-bearing surface (ABS) opposite the back side. The slider is mounted to the suspension on the back side. The disk drive further comprises an EAMR transducer coupled with the slider, a portion of the EAMR transducer residing in proximity to the ABS and on the laser-facing surface of the slider. The disk drive further comprises a laser coupled with the suspension and having a light emitting surface facing the laser-facing surface of the slider. The laser has an optic axis substantially parallel to the suspension. The laser provides energy substantially along the optic axis and is optically coupled with the EAMR transducer via free space. The EAMR transducer receives the energy from the laser and writes to the media using the energy.
Abstract:
A method and system for providing a pole of magnetic transducer having an air-bearing surface (ABS) are described. Leading shield and planarization stop layers are provided. Portions of the planarization stop and shield layers distal from the ABS location are removed, providing a depression forming a bevel. The bevel has an angle greater than zero and less than ninety degrees. An intermediate layer having a top surface substantially perpendicular to the ABS location is provided. Part of the intermediate layer is removed, forming a trench having a bottom corresponding to the leading shield and a location and profile corresponding to the pole. A nonmagnetic layer is provided at least partially in the trench. The pole with a leading edge bevel corresponding to the bevel is provided in the trench. A capping layer covering the pole is provided, at least part of the intermediate layer removed, and a wrap-around shield provided.