Abstract:
Provided are display devices using electrochromism and PDLC and methods of driving the display devices. A display device may include a plurality of first electrodes and a plurality of second electrodes; a polymer dispersed liquid crystal (PDLC) layer between the first electrodes and the second electrodes; a plurality of third electrodes and a plurality of fourth electrodes; a plurality of electrochromic layers between the third electrodes and the fourth electrodes; and an electrolyte layer between the third electrodes and the fourth electrodes.
Abstract:
A method of manufacturing an active matrix electrochromic device includes preparing a first substrate including a thin film transistor including a gate electrode, a source electrode, and a drain electrode, and a pixel electrode electrically connected to the drain electrode. An electrochromic layer is formed on the pixel electrode by an electrophoretic process which includes immersing the first substrate and a mesh spaced apart from each other in a solution. While the first substrate is immersed in the solution so that the pixel electrode is soaked therein, a channel of the thin film transistor is opened by applying a voltage to the gate electrode, a potential difference between the pixel electrode and the mesh is generated by connecting a voltage source between a terminal electrically connected to the source electrode and the mesh, and materials in the solution are deposited on the pixel electrode, thereby forming the electrochromic semiconductor layer.
Abstract:
Provided is a method of manufacturing a reflective color filter. According to the method, the reflective color filter may reflect light having a desired wavelength by controlling the distance between colloidal particles. The method of manufacturing a reflective color filter may include forming colloidal particles having a charged surface, forming colloidal crystals by controlling distances between the colloidal particles, and forming a photonic crystal composite by fixing the colloidal crystals having the colloidal particles.
Abstract:
A field emission backlight unit for a liquid crystal display (LCD) includes: a lower substrate; first electrodes and second electrodes alternately formed in parallel lines on the lower substrate; emitters disposed on at least the first electrodes; an upper substrate spaced apart from the lower substrate by a predetermined distance such that the upper and lower substrates face each other; a third electrode formed on a bottom surface of the upper substrate; and a fluorescent layer formed on the third electrode. Since the backlight unit has a triode-type field emission structure, field emission is very stable. Since the first electrodes and the second electrodes are formed in the same plane, brightness uniformity is improved and manufacturing processes are simplified. If the emitters are disposed on both the first electrodes and the second electrodes, and a cathode voltage and a gate voltage are alternately applied to the first electrodes and second electrodes, the lifespan and brightness of the emitters can be improved. The above advantages are also achieved as a result of the method of driving the backlight unit and the method of manufacturing the lower panel thereof.
Abstract:
Example embodiments include an RFID display pixel, and a display panel and a display apparatus using the RFID display pixel. The RFID display pixel includes an RFID tag having an antenna and an IC chip; and a display device connected to the RFID tag. The display device is driven according to information received from the antenna. The display apparatus includes a display panel having a two-dimensional array of a plurality of RFID display pixels having the RFID tag and display device. An image control unit generates an image signal to be displayed on the display panel and an RFID reading unit wirelessly communicates with the RFID tag and transmits the image signal generated in the image control unit to the RFID tag.
Abstract:
A method of forming a carbon nanotube emitter includes: forming a carbon nanotube composite on a substrate with a predetermined shape, coating surface treating material in a liquid phase on the carbon nanotube composite and drying the surface treating material, and peeling the dried surface treating material off of the carbon nanotube composite.
Abstract:
A carbon nanotube emitter and its fabrication method, a Field Emission Device (FED) using the carbon nanotube emitter and its fabrication method include a carbon nanotube emitter having a plurality of first carbon nanotubes arranged on a substrate and in parallel with the substrate, and a plurality of the second carbon nanotubes arranged on a surface of the first carbon nanotubes.
Abstract:
A mask used for a Lithographie, Galvanofomung, and Abformung (LIGA) process, a method for manufacturing the mask, and a method for manufacturing a microstructure using a LIGA process. The method for manufacturing the microstructure using the LIGA process contemplates forming a substrate for the microstructure, a plurality of photosensitive layers, each photosensitive layer having a plating hole and an aligning pinhole, and an aligning pin capable of being inserted into the aligning pinhole, with the aligning pinholes of the photosensitive layers being formed in corresponding positions, and repeating a process of stacking the photosensitive layer on the substrate for the microstructure and a process of forming a plating layer by plating the plating hole of the stacked photosensitive layer with a metal for a number of times corresponding to the number of the photosensitive layers, and when the photosensitive layers are stacked on the substrate for the structure, the photosensitive layers being aligned with one another by inserting the aligning pin into the aligning pinholes of all the photosensitive layers stacked on the substrate for the microstructure to penetrate all the photosensitive layers.
Abstract:
A method of manufacturing a carbon nanotube field emission device whereby a catalyst layer is formed on a base structure, a solution containing a carbon nanotube powder is coated on the catalyst layer, and an electroless deposition solution is coated on the carbon nanotube coating layer. The method can provide a carbon nanotube field emission device having an improved field emission efficiency and increased lifetime.
Abstract:
A field emission device and its method of manufacture includes: a substrate; a plurality of cathode electrodes formed on the substrate and having slot shaped cathode holes to expose the substrate; emitters formed on the substrate exposed through each of the cathode holes and separated from both side surfaces of the cathode holes, the emitters being formed along a lengthwise direction of the cathode holes; an insulating layer formed on the substrate to cover the cathode electrodes and having insulating layer holes communicating with the cathode holes; and a plurality of gate electrodes formed on the insulating layer and having gate holes communicating with the insulating layer holes.