Abstract:
A disclosed technique includes triggering a change for a first set of one or more functional elements and for a second set of one or more functional elements from a high-power state to a low-power state; saving first state of the first set of one or more functional elements via a first set of one or more save-state elements; saving second state of the second set of one or more functional elements via a second set of one or more save-state elements; powering down the first set of one or more functional elements and the second set of one or more functional elements; and transmitting the first state and the second state to a memory.
Abstract:
Devices and methods for linear addressing are provided. A device is provided which comprises a plurality of components having assigned registers used to store data to execute a program and a power management controller, in communication with the components. The power management controller is configured to send one of a request to remove power to the components and a request to reduce power to the components when it is determined that the components are idle, execute a first process of one of removing power and reducing power to the components and entering a reduced power state when an acknowledgement of the request is received and execute a second process of restoring power to the components when one or more of the components are indicated to be active.
Abstract:
A disclosed technique includes transmitting data in a first buffer associated with a first display pipe to a first display associated with the first display pipe; transmitting data in a second buffer associated with a second display pipe to the first display; requesting wake-up of a memory; and refilling one or both of the first buffer and the second buffer from the memory.
Abstract:
Systems, apparatuses, and methods for reducing chiplet interrupt latency are disclosed. A system includes one or more processing nodes, one or more memory devices, a communication fabric coupled to the processing unit(s) and memory device(s) via link interfaces, and a power management unit. The power management unit manages the power states of the various components and the link interfaces of the system. If the power management unit detects a request to wake up a given component, and the link interface to the given component is powered down, then the power management unit sends an out-of-band signal to wake up the given component in parallel with powering up the link interface. Also, when multiple link interfaces need to be powered up, the power management unit powers up the multiple link interfaces in an order which complies with voltage regulator load-step requirements while minimizing the latency of pending operations.
Abstract:
Systems, apparatuses, and methods for reducing chiplet interrupt latency are disclosed. A system includes one or more processing nodes, one or more memory devices, a communication fabric coupled to the processing unit(s) and memory device(s) via link interfaces, and a power management unit. The power management unit manages the power states of the various components and the link interfaces of the system. If the power management unit detects a request to wake up a given component, and the link interface to the given component is powered down, then the power management unit sends an out-of-band signal to wake up the given component in parallel with powering up the link interface. Also, when multiple link interfaces need to be powered up, the power management unit powers up the multiple link interfaces in an order which complies with voltage regulator load-step requirements while minimizing the latency of pending operations.
Abstract:
Systems, apparatuses, and methods for performing efficient power management for a multi-node computing system are disclosed. A computing system includes multiple nodes. When power down negotiation is distributed, negotiation for system-wide power down occurs within a lower level of a node hierarchy prior to negotiation for power down occurring at a higher level of the node hierarchy. When power down negotiation is centralized, a given node combines a state of its clients with indications received on its downstream link and sends an indication on an upstream link based on the combining. Only a root node sends power down requests.
Abstract:
An electronic device includes a plurality of hardware functional blocks, the hardware functional blocks being logically grouped into two or more islands, with each island including a different one or more of the hardware functional blocks. A hardware controller in the electronic device is configured to determine a present activity being performed by at least one of the hardware functional blocks. The hardware controller then, based on the present activity, configures supply voltages for the hardware functional blocks in some or all of the islands.
Abstract:
Systems, apparatuses, and methods for implementing dynamic clock control to increase stutter efficiency in a memory subsystem are disclosed. A system includes at least a processor, a memory, and a communication fabric coupled to the processor and memory. The system implements a stutter mode for a first region of the fabric, with stutter mode including an idle state and an active state. Stutter efficiency is defined as the idle time divided by the sum of the active time and the idle time. Reducing the exit latency of going from the idle state to the active state increases the stutter efficiency which increases the power savings achieved by implementing the stutter mode. Since the phase-locked loop (PLL) is one of the main contributors to the exit latency, the PLL is powered down and one or more bypass clocks are provided during the stutter mode.
Abstract:
The present disclosure presents methods and apparatuses for controlling a power state, which may include a C-state, of one or more processing cores of a processor. In an aspect, an example method of securing a power state change of a processor is presented, the method including the steps of receiving a power state change request from the processor, the processor having a plurality of potential power states each including an operating power profile; determining a power state change request mode associated with the processor; forwarding the power state change request to a security processor where the power state change request mode is a one-time request mode; receiving a power state change request response from the security processor in response to the request; and adjusting the current power state of the processor to the target power state where the power state change request response comprises a power state change approval.
Abstract:
The present disclosure presents methods and apparatuses for controlling a power state, which may include a C-state, of one or more processing cores of a processor. In an aspect, an example method of securing a power state change of a processor is presented, the method including the steps of receiving a power state change request from the processor, the processor having a plurality of potential power states each including an operating power profile; determining a power state change request mode associated with the processor; forwarding the power state change request to a security processor where the power state change request mode is a one-time request mode; receiving a power state change request response from the security processor in response to the request; and adjusting the current power state of the processor to the target power state where the power state change request response comprises a power state change approval.