Abstract:
A common IP layer client device interface within an IP multimedia gateway (IMG) is configured to connect client devices to broadband IP networks such as the Internet based on determined device capabilities. Broadband IP network interfaces within the IMG are configured to enable communication between the IMG and broadband IP networks based on the determined device capabilities. Content provided by various service managers are communicated with the client devices utilizing the common IP layer client device interface and the configured network interfaces. Network capabilities may be determined during the device and network discovery. Protocol translation, media transcoding and/or dynamic device configuration may be performed based on the determined device capabilities, and based on the determined network capabilities. The IMG may adjust system timing and manage power consumptions for service deployment over corresponding client devices. Information may be routed or distributed by the IMRG among the client devices when needed.
Abstract:
A participation device in a multiparty conference call may act as a server device and/or a client device for two-way audio and video (AV) streaming. A server device may encode a requested AV stream into a set of different encoding profiles that may be dynamically determined based on the varying channel conditions and device capacities of the client devices. At least a portion of differently encoded AV streams is selected and dynamically communicated to the client devices for display. Session parameters are determined according to the varying channel conditions and the device capacities of the client devices to create intended sessions. The selected encoded AV streams are communicated utilizing segment-based adaptive streaming techniques such as HTTP. A client device may access to a HTTP session to download an expected AV stream from the server device. The downloaded AV stream may be decoded into different decoding profiles for display as needed.
Abstract:
A device in an industrial environment may adapt communications to account for industrial noise in the industrial environment. The device may send a first communication to a destination device in the industrial environment using a first communication technology. The device may access noise prediction data for the industrial environment, and the noise prediction data may indicate predicted noise for one or more portions of the industrial environment, including a communication pathway to the destination device using the first communication technology. The device may adapt a subsequent communication to the destination device to account for the predicted noise along the communication pathway.
Abstract:
Aspects of a method and system for managing power consumption utilizing inter-gateway communication are provided. In this regard, a first broadband gateway residing in a first location may determine past, present, and/or expected power consumption of the first location. The gateway may receive, from one or more other broadband gateways residing in one or more other locations, information that enables determining past, present, and/or expected power consumption of the other location(s). The gateway may control power consumption of the first location by controlling a state of operation of devices residing in the first location. The gateway may determine aggregate power consumption of the first location and the other location(s). The gateway may control power consumption of the first location by enabling operation of one or more devices during periods of lower aggregate power consumption and disabling operation the devices during periods of higher aggregate power consumption.
Abstract:
A media gateway that services a plurality of client devices may be used to combine a plurality of encoded multimedia transport streams, which may comprise a buffered copy of received encoded broadcast multimedia transport stream and an encoded local multimedia transport stream that pertains to the broadcast transport stream. The media gateway may decode the encoded broadcast multimedia transport stream to extract broadcast multimedia content carried therein based on determination of capabilities of one or more client devices used in playback of the content. The encoded local multimedia transport stream may be generated based on local multimedia content generated and/or captured via one or more client devices. The buffering duration of the received encoded broadcast multimedia transport stream may be adaptively determined, to ensure that the encoded local multimedia transport stream and the encoded broadcast multimedia transport stream are synchronized when they are combined.
Abstract:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, the communication architectures distribute data across multiple orbital angular momentum channels in the bonded channel group.
Abstract:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, the communication architectures distribute video programming in the form of MPEG2 TS packets, flagged by marker packets, in a round-robin manner across the communication channels. Channel bonding synchronization information may be present in packets defined above the data-link layer or added to fields within data-link layer frames.
Abstract:
Disclosed are various embodiments that facilitate recording to a storage medium in a personal video recorder (PVR) system. In one embodiment, a transport stream is received. The transport stream is stored into a memory. An index table is generated that provides information for locating particular frames recorded in the memory.
Abstract:
A technique of using a remote control device to identify a source for transferring content on a home network, a renderer for rendering the content and a pathway within a home network to couple the source to the renderer to transfer the content. The remote control device then transmits control information to the source to set a control parameter value within the source to send the content and transmits control information to the renderer to set a control parameter value within the renderer to receive the content. The commands from the remote configure parameter values associated with a media layer in the source and/or the renderer to initiate a hand-shake to effect the content transfer, so that the source and the renderer need not initiate the hand-shake between themselves.
Abstract:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, the communication architectures distribute video programming in the form of MPEG2 TS packets, flagged by marker packets, in a round-robin manner across the communication channels. Channel bonding synchronization information may be present in packets defined above the data-link layer or added to fields within data-link layer frames.