Abstract:
A glass element having a thickness from 25 μm to 125 μm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress σI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is held at a bend radius from about 1 mm to about 20 mm for at least 60 minutes at about 25° C. and about 50% relative humidity. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
Abstract:
A torque transmission assembly comprising: (i) an optical fiber coupled to an optical sensing component and capable of rotating and translating the optical sensing component and of transmitting light to and from the optical sensing component; and (b) an annular structure surrounding the optical fiber, the annular structure in conjunction with said optical fiber transmits torque from a rotating component to the optical sensing component, wherein the annular structure does not include a steel wire torque spring.
Abstract:
The glass containers described herein are resistant to delamination, have improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. The body may also have a compressively stressed layer extending from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa. A lubricous coating may be positioned around at least a portion of the outer surface of the body, such that the outer surface of the body with the lubricous coating has a coefficient of friction less than or equal to 0.7.
Abstract:
A method of forming an antimicrobial film, including providing a substrate with a polymer coating disposed thereon, the polymer coating including: an antimicrobial material, an inner surface contacting the substrate, and an outer surface opposite the inner surface; and extracting ions from the antimicrobial material toward the outer surface, such that the outer surface interacts with surface microorganisms. A composition, including a polymer; an antimicrobial material; and at least one of an organic solvent and an additive. The antimicrobial material comprises at least one of copper-containing glass particles, copper oxide particles, copper metal particles, copper salts, copper coordination complexes, cuprite crystals, and a combination thereof. Further, the additive can be selected to increase the oxidation resistance of the antimicrobial material.
Abstract:
A glass container for storing pharmaceutical formulations may include a glass body formed from a Type IA or Type IB glass composition according to ASTM Standard E438-92(2011). The glass body may include a wall portion with an inner surface and an outer surface, a heel portion and a floor portion, wherein the inner surface of the glass container is formed by the inner surface of the glass body. The glass body may include at least a class A2 base resistance or better according to ISO 695, at least a type HGB2 hydrolytic resistance or better according to ISO 719 and Type 1 chemical durability according to USP . The glass container does not comprise a boron-rich layer on the inner surface of the glass body in as formed condition.
Abstract:
Embodiments of the present disclosure are directed to coated glass articles which reduce glass particle formation caused by glass to glass contact in pharmaceutical glass filling lines.
Abstract:
A method of plugging channels of a honeycomb body and a honeycomb body including plugged channels. The method includes applying a shear force to a plugging mixture including a plurality of inorganic particles, clay, and a liquid vehicle to alter the viscosity of the plugging mixture from a first viscosity prior to the vibrating to a second viscosity which is less than the first viscosity. A honeycomb body is placed into contact with the plugging mixture such that a portion of the plugging mixture having the second viscosity flows into the plurality of channels. Application of the shear force is stopped or reduced to increase the viscosity of the portion of the plugging mixture in the plurality of channels to greater than the first viscosity.
Abstract:
According to embodiments, a method of making a coated pharmaceutical container, may include: forming a glass tube; forming the glass tube into a pharmaceutical container comprising an interior surface and an exterior surface; and applying a coating to the exterior surface. The coating has a coefficient of friction less than or equal to 0.7 relative to a second pharmaceutical container when tested in a vial-on-vial testing jig under a normal load of 30 N. The coated pharmaceutical container may be thermally stable after depyrogenation at a temperature of at least 260° C. for 30 minutes in air.
Abstract:
Disclosed herein are delamination resistant glass pharmaceutical containers which may include a glass body having a Class HGA1 hydrolytic resistance when tested according to the ISO 720:1985 testing standard. The glass body may have an interior surface and an exterior surface. The interior surface of the glass body does not comprise a boron-rich layer when the glass body is in an as-formed condition. A heat-tolerant coating may be bonded to at least a portion of the exterior surface of the glass body. The heat-tolerant coating may have a coefficient of friction of less than about 0.7 and is thermally stable at a temperature of at least 250° C. for 30 minutes.
Abstract:
Glass articles with coatings are disclosed herein. According to embodiments, a glass article may include a glass body comprising glass and having a first surface and a second surface opposite the first surface, wherein the first surface is an exterior surface of the glass body. A coating disposed on at least a portion of the exterior surface of the glass body. The coated glass article may have an effective throughput rate greater than or equal to 1.10×RT, wherein RT is the effective throughput rate of an uncoated glass article in units of parts per minute (ppm).