Abstract:
Disclosed are multilayer film structures comprising a layer (B) that comprises a crystalline block copolymer composite (CBC) or a specified block copolymer composite (BC), comprising i) an ethylene polymer (EP) comprising at least 80 mol % polymerized ethylene; ii) an alpha-olefin-based crystalline polymer (CAOP) and iii) a block copolymer comprising (a) an ethylene polymer block comprising at least 80 mol % polymerized ethylene and (b) a crystalline alpha-olefin block (CAOB); and a layer C that comprises a polyolefin having at least one melting peak greater than 1255 C, the top facial surface of layer C in adhering contact with the bottom facial surface of layer B. Such multilayer film structure preferably comprises (A) a seal layer A having a bottom facial surface in adhering contact with the top facial surface of layer B. Such films are suited for use in electronic device (ED) modules comprising an electronic device such as a PV cell. Also disclosed is a lamination process to construct a laminated PV module comprising such multilayer film structures.
Abstract:
A polymeric composition includes a resin including an ethylene-based polymer and a copolymer of ethylene and an alpha olefin comonomer. The resin has a High Mw Comonomer Content of 3.2 wt % or greater based on a total weight of the resin over the weight average molecular weight range of 105 g/mol to 105.5 g/mol as measured by Ethylene GPC. The polymeric composition has a Relevant Comonomer Content of 0.6 wt % or greater. The polymeric composition also includes at least one of (i) a polydimethylsiloxane having a weight average molecular weight of 550,000 g/mol to 650,000 g/mol as measured according to Component GPC and (ii) a polymeric ultraviolet light stabilizer comprising a hindered amine moiety and having a weight average molecular weight from 5,000 g/mol to 20,000 g/mol as measured according to Component GPC.
Abstract:
Embodiments of the present invention relate to compositions, multilayer films, and articles. In one aspect, a composition comprises (a) an ionomer that is an acid copolymer comprising ethylene and at least one of acrylic acid and methacrylic acid, wherein a portion of the acid groups in the acid copolymer are neutralized by metal ions and are carboxylic acid salts, and wherein the acid copolymer, prior to neutralization of acid groups by metal ions, comprises 5 to 30 weight percent of acrylic acid and methacrylic acid; (b) an ethylene/unsaturated ester copolymer comprising ethylene vinyl acetate, ethylene acrylate, or a combination thereof; and (c) a propylene-based polymer comprising a copolymer of propylene and a comonomer comprising ethylene, butene, hexene, or octene, wherein the propylene-based polymer has a molecular weight distribution (MWD) of less than 3.0, and a viscosity ratio (viscosity at 0.1 s−1/viscosity at 100 s−1) of greater than 7.0.
Abstract:
The present disclosure provides embodiments of a tetrapolymer composition. In embodiments, the tetrapolymer composition may have the formula E/P/X/CO, which may include from 25 wt. % to 90 wt. % of ethylene (E), from 0.1 wt. % to 5.0 wt. % of propylene (P), from 5 wt. % to 40 wt. % of alkyl acrylate (X), and from 3 wt. % to 30 wt. % of carbon monoxide (CO). X may be selected from the group consisting of vinyl acetate or n-butyl acrylate. The tetrapolymer composition may have a melt index, 12, from 10 to 1,000 g/10 min when measured according to ASTM 1238 at 2.16 kg and 190 C. Additionally, the present disclosure provides embodiments of a polymer formulation comprising the tetrapolymer composition and polyvinyl chloride.
Abstract:
A composition comprising the following components: a) at least one propylene/ethylene interpolymer or at least one propylene/alpha-olefin interpolymer, each interpolymer comprising the following properties: i) a melting point, Tm, from 60° C. to 85° C., ii) a viscosity (177° C.) from 3,000 cP to 30,000 cP; b) at least one wax; c) at least one oil; and wherein the composition has a weight ratio component b to component c from 0.30 to 4.0.
Abstract:
A method to produce a tile comprising at least the following layered sections: a wear layered section, a decor layered section and a base layered section; and wherein the wear layered section comprises the following: A) a compositional layer A formed from a composition A comprising at least one olefin-based polymer; wherein the decor layered section comprises the following: B1) a compositional layer B1 formed from a composition B1 comprising a propylene-based polymer; B2) a compositional layer B2 formed from a composition B2 comprising an olefin-based polymer; wherein the base layered section comprises the following: C) a compositional layer C formed from a composition C comprising an olefin-based polymer; wherein the method comprises the following step(s): i) heat laminating compositional layer A to compositional layer B1, at a temperature T1≤140° C.; and wherein, for a continuous production of the tile, T1 is the temperature at the surface of the compositional layer with the highest, or equivalent, surface temperature; and for a batch production of the tile, T1 is the interfacial temperature between the two compositional layers; ii) heat laminating compositional layer B2 to compositional layer C, at a interfacial temperature T2≤140° C.; and wherein, for a continuous production of the tile, T2 is the temperature at the surface of the compositional layer with the highest, or equivalent, surface temperature; and for a batch production of the tile, T2 is the interfacial temperature between the two compositional layers.
Abstract:
A composition comprising (A) from 10 wt % to 90 wt % of a propylene component including at least one propylene based polymer having a propylene content of at least 50.0 wt %, based on the total weight of the propylene based polymer, and a melt flow rate from 0.5 g/10 min to 200.0 g/10 min (ASTM D-1238 at 230° C., 2.16 kg); (B) from 1 wt % to 60 wt % of a polyolefin elastomer; (C) from 1 wt % to 20 wt % of a block composite comprising (i) an ethylene-propylene copolymer, (ii) an isotactic polypropylene copolymer, and (iii) a block copolymer including an ethylene-propylene soft block that has a same composition as the ethylene-propylene copolymer of the block composite and an isotactic polypropylene hard block that has a same composition as the isotactic polypropylene copolymer of the block composite; and (D) optionally, from 0.1 wt % to 10 wt % of an antioxidant.
Abstract:
A composition comprising the following components: A) a first ethylene/alpha-olefin interpolymer with a melt index I2A; B) a second ethylene/alpha-olefin interpolymer with a melt index I2B; and wherein the difference in melt index (I2): (I2A−I2B)≥400, and wherein I2B≤100 g/10 min; C) a filler, and wherein the filler is present in an amount ≥50 wt %, based on the weight of the composition; D) a tackifier; and wherein the melt viscosity, at 165 C, of the composition, excluding the filler (component C), is ≤30,000 cP.
Abstract:
Embodiments of the present invention relate to multilayer structures, packages formed therefrom, and methods of preparing multilayer structures. In one aspect, a multilayer structure comprises a polyolefin layer which is Layer A, a tie layer which is Layer B, and a barrier layer which is Layer C, each layer having opposing facial surfaces. In some embodiments of the multilayer structure: Layer A has a top facial surface and a bottom facial surface and comprises polypropylene; Layer B has a top facial surface and a bottom facial surface and comprises: a) a crystalline block copolymer composite (CBC) comprising: i) a crystalline ethylene based polymer (CEP) comprising at least 90 mol % polymerized ethylene; ii) an alpha-olefin-based crystalline polymer (CAOP); and iii) a block copolymer comprising (a) a crystalline ethylene block (CEB) comprising at least 90 mol % polymerized ethylene and (b) a crystalline alpha-olefin block (CAOB); b) maleic anhydride grafted polyethylene or maleic anhydride grafted polypropylene; and, c) low density polyethylene; and, Layer C comprises a metal foil and has a top facial layer and a bottom facial surface, the top facial surface of Layer C being in adhering contact with the bottom facial surface of Layer B, and the top facial surface of Layer B being in adhering contact with the bottom facial surface of Layer A.
Abstract:
The present disclosure provides a fabric laminate. In an embodiment, the fabric laminate includes a fabric sheet, a coating layer, and a tie layer. The fabric sheet is composed of propylene-based polymer fibers. The coating layer is composed of one or more ethylene-based polymers. The tie layer is located between the fabric sheet and the coating layer. The tie layer is composed of at least 50 wt % of a crystalline block composite (CBC) and an optional blend component. The CBC includes (i) an isotactic crystalline propylene homopolymer (iPP); (ii) an ethylene/propylene copolymer; and (iii) a diblock with the formula (EP)-(iPP). The CBC has a block composite index (CBCI) from 0.1 to 1.0. The fabric laminate has a peel force from 20 N/15 mm to 40 N/15 mm.