Abstract:
A resistance adjusting type heater including a honeycomb structure, electrodes provided on the honeycomb structure, and slits as a resistance adjusting device provided between the electrodes, a sealing device for sealing a heat-non-generating portion of the honeycomb structure, wherein a gas is introduced into the passages of the heat-generating portion of the honeycomb structure and is heated. With this heater, the entirety of the exhaust gas introduced into the heater can be heated rapidly thereby ensuring excellent purification efficiency.
Abstract:
A catalyst composition for purification of exhaust gas, including (a) high-silica zeolite having a Si/Al ratio of 40 or more, subjected to ion exchange with at least one metal selected from Pt, Pd, Rh, Ir and Ru, and (b) a heat-resistant oxide containing at least one metal selected from Pt, Pd, Rh, Ir and Ru; a catalyst for purification of exhaust gas, including a monolith carrier and the catalyst composition supported on the carrier; and a process for producing the catalyst. The catalyst has high activity for exhaust gas purification even when the catalyst contains Rh--, --, which is an expensive catalyst component, in a very small amount.
Abstract:
It is an object of the present invention to provide a television receiver for discriminating a CM broadcast from a received television broadcast and controlling a volume of the CM broadcast without complicating a configuration of a discriminating process of the CM broadcast. The present invention includes a silence detection means, a scene change detection means, a video audio changing point detection means, a first characteristic amount extraction means, a second characteristic amount extraction means, a comparison determining means and a volume control means. The comparison determining means compares the first characteristic amount which is an audio characteristic amount of a television signal before the time when the video audio changing point is detected, and the second characteristic amount which is an audio characteristic amount of a television signal after the time when the video audio changing point is detected, to determine whether a predetermined condition is satisfied or not. The volume control means controls an output level when outputting audio of the television signal on the basis of a result of the comparison determining means.
Abstract:
In the plasma reaction vessel (1) of the invention, two or more laminate-structures (6) having ceramic formed bodies (3, 4) in which a plasma generating electrode (2) capable of generating plasma is formed in two-tape-form, and an electrically continuous film-like electrically conductive electrode (5) held between the two ceramic formed bodies (3, 4) are formed in such a manner as to form a plasma generating space (7) containing mutual laminate planes therein. Of the electrically conductive electrodes (5), adjacent ones are capable of having electric discharge produced therebetween so as to generate the plasma in the plasma generating space (7) and of generating uniform stabilized plasma at low electric power, it being possible to reduce a passage resistance to a gas passing therein.
Abstract:
It is an object of the present invention to provide a television receiver for discriminating a CM broadcast from a received television broadcast and controlling a volume of the CM broadcast without complicating a configuration of a discriminating process of the CM broadcast. The present invention includes a silence detection means, a scene change detection means, a video audio changing point detection means, a first characteristic amount extraction means, a second characteristic amount extraction means, a comparison determining means and a volume control means. The comparison determining means compares the first characteristic amount which is an audio characteristic amount of a television signal before the time when the video audio changing point is detected, and the second characteristic amount which is an audio characteristic amount of a television signal after the time when the video audio changing point is detected, to determine whether a predetermined condition is satisfied or not. The volume control means controls an output level when outputting audio of the television signal on the basis of a result of the comparison determining means.
Abstract:
A deflection yoke apparatus include a saddle-type coil bobbin, first guide grooves, second guide groove, third guide groove, and a multi-wire conductor. The saddle-type coil bobbin has a front end portion and a rear end portion. The first guide grooves is formed in the inner surface of the coil bobbin and extends across the front end portion and the rear end portion. The second guide groove is formed in the front end portion of the coil bobbin. The third guide groove is formed in the rear end portion of the coil bobbin. The multi-wire conductor is wound around the coil bobbin, the conductor being routed through the first guide groove, the second guide groove, and the third guide groove. The second guide groove and third guide groove have a width in a range of 1.0 to 1.5 times the diameter of the conductor.
Abstract:
A reformer is disposed in the flow path of a reactant fluid. The reformer includes an electrically heatable heater unit of honeycomb structure, in the upstream of the flow path of a reactant fluid, and a catalyst unit of honeycomb structure capable of generating hydrogen from a reactant fluid containing an organic compound or carbon monoxide, by catalysis, in the downstream of the above heater unit. The heater unit and catalyst unit satisfy the following relationship: Cell density of the heater unit≦Cell density of the catalyst unit. The reformer improve efficiency for production of hydrogen and reduce CO as the by-product.
Abstract:
A heater unit includes a metallic casing, and a honeycomb heater held in the casing via a metallic holding member, comprising a metallic honeycomb structure having a large number of parallel passages extending in the direction of the flow of an exhaust gas passing through the heater unit and at least one electrode for electrical heating of the honeycomb structure, attached to the honeycomb structure. In the heater unit, the holding member has such a structure as (1) is fitted to part of the outer surface of the honeycomb heater to allow the honeycomb heater to have a stable shape and (2) substantially blocks the flow path of exhaust gas between the honeycomb heater and the casing. This heater unit can withstand severe operating conditions such as experienced in automobiles; moreover, in this heater unit, the by-pass flow of exhaust gas is made substantially zero and the whole exhaust gas can pass through the honeycomb heater.
Abstract:
An exhaust gas purification system includes an adsorbent containing an adsorbent element for adsorbing harmful compounds such as hydrocarbon in an exhaust gas and a catalyst containing a catalyst element for lowering the harmful compounds in the exhaust gas, each disposed in the exhaust gas pipe of an internal combustion engine. When an oxidizing gas is added to the exhaust gas or amounts of combustion gas and fuel are regulated, for a given period, in the process in which the hydrocarbon in the exhaust gas produced at the cold start-up of the internal combustion engine are adsorbed by the adsorbent and desorbed from the adsorbent as a temperature of the adsorbent is increased by the exhaust gas, an exhaust gas composition containing excessive oxygen is provided and the desorbed hydrocarbon are oxidized on the catalyst. With this arrangement, the harmful compounds in the exhaust gas, in particular, the hydrocarbon produced in a large amount at the cold start-up of the engine can be effectively purified.
Abstract:
A honeycomb heater including a honeycomb structure, two electrodes and a plurality of slits extending through the honeycomb structure. The slits are provided to elongate a current flow path through the honeycomb structure and to define a plurality of first regions of partition walls and at least one second region of partition walls. The first regions are locally quickly heated with respect to at least one second region upon electrification of the honeycomb structure, and the first regions are spaced apart from each other. In addition, the first regions in total extend over an area 5 to 50% of a total cross-sectional area of the honeycomb structure. Alternatively, the honeycomb structure may include at least one first region and a plurality of second regions, the second regions being spaced apart by the at least one first region.