Abstract:
Device structure and fabrication methods for a bipolar junction transistor. An emitter layer is formed on a base layer and etched to form an emitter of the device structure. The emitter layer has a concentration of an element that varies as a function of the thickness of the emitter layer. The etch rate of the emitter layer varies as a function of the concentration of the element such that the emitter has a variable width over the thickness of the emitter layer.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to heterojunction bipolar transistor device integration schemes on a same wafer and methods of manufacture. The structure includes: a power amplifier (PA) device comprising a base, a collector and an emitter on a wafer; and a low-noise amplifier (LNA) device comprising a base, a collector and an emitter on the wafer, with the emitter having a same crystalline structure as the base.
Abstract:
Device structures and fabrication methods for a heterojunction bipolar transistor. A collector of the device structure has a top surface and a sidewall that is inclined relative to the top surface. The device structure further includes an emitter, an intrinsic base that has a first thickness, and an extrinsic base coupled with the intrinsic base. The extrinsic base has a lateral arrangement relative to the intrinsic base and relative to the emitter. The intrinsic base has a vertical arrangement between the emitter and the top surface of the collector. The sidewall of the collector extends laterally to undercut the extrinsic base. The extrinsic base has a second thickness that is greater than a first thickness of the intrinsic base.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to co-integration of self-aligned and non-self aligned heterojunction bipolar transistors and methods of manufacture. The structure includes at least two heterojunction bipolar transistor (HBT) devices integrated onto a same wafer with different epitaxial base profiles. An intrinsic base epitaxy for a second device of the at least two HBT devices acts as an extrinsic base for a first device of the at least two HBT devices.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to co-integration of self-aligned and non-self aligned heterojunction bipolar transistors and methods of manufacture. The structure includes at least two heterojunction bipolar transistor (HBT) devices integrated onto a same wafer with different epitaxial base profiles. An intrinsic base epitaxy for a second device of the at least two HBT devices acts as an extrinsic base for a first device of the at least two HBT devices.
Abstract:
A method of making a semiconductor structure is provided including providing a plurality of fins on a semiconductor substrate; depositing a layer containing silicon dioxide on the plurality of fins and on a surface of the semiconductor substrate; depositing a photoresist layer on one or more but less than all of the plurality of fins; etching the layer of silicon dioxide off of one or more of the plurality of fins on which the photoresist layer had not been deposited; stripping the photoresist layer; depositing a layer of pure boron on one or more of the plurality of fins on which a photoresist had not been deposited; and depositing a silicon nitride liner step on the plurality of fins. A partial semiconductor device fabricated by said method is also provided.
Abstract:
Methods of forming bipolar device structures and bipolar device structures. An opening may be formed in a device layer of a silicon-on-insulator substrate that extends to a buried insulator layer of the silicon-on-insulator substrate. An intrinsic base layer may be grown within the device layer opening by lateral growth on opposite first and second sidewalls of the device layer bordering the opening. A first collector of a first bipolar junction transistor of the device structure may be formed at a first spacing from the first sidewall. A second collector of a second bipolar junction transistor of the device structure may be formed at a second spacing from the second sidewall. An emitter, which is shared by the first bipolar junction transistor and the second bipolar transistor, is formed inside the opening. Portions of the intrinsic base layer may supply respective intrinsic bases for the first and second bipolar junction transistors.
Abstract:
Fabrication methods and device structures for a heterojunction bipolar transistor. A trench isolation region is formed that surrounds an active region of semiconductor material, a collector is formed in the active region, and a base layer is deposited that includes a first section over the trench isolation region, a second section over the active region, and a third section over the active region that connects the first section and the second section. An emitter is arranged over the second section of the base layer, and an extrinsic base layer is arranged over the first section of the base layer and the third section of the base layer. The extrinsic base layer includes a first section containing polycrystalline semiconductor material and a second section containing single-crystal semiconductor material. The first and second sections of the extrinsic base layer intersect along an interface that extends over the trench isolation region.
Abstract:
Fabrication methods and device structures for heterojunction bipolar transistors. A first emitter of a first heterojunction bipolar transistor and a second collector of a second heterojunction bipolar transistor are formed in a device layer of a silicon-on-insulator substrate. A first base layer of a first heterojunction bipolar transistor is epitaxially grown on the device layer with an intrinsic base portion arranged on the first emitter. A first collector of the first heterojunction bipolar transistor is epitaxially grown on the intrinsic base portion of the first base layer. A second base layer of the second heterojunction bipolar transistor is epitaxially grown on the device layer with an intrinsic base portion arranged on the second collector. A second emitter of the second heterojunction bipolar transistor is epitaxially grown on the intrinsic base portion of the second base layer. A connection is formed between the first emitter and the second collector.
Abstract:
Fabrication methods and device structures for heterojunction bipolar transistors. A first emitter of a first heterojunction bipolar transistor and a second collector of a second heterojunction bipolar transistor are formed in a device layer of a silicon-on-insulator substrate. A first base layer of a first heterojunction bipolar transistor is epitaxially grown on the device layer with an intrinsic base portion arranged on the first emitter. A first collector of the first heterojunction bipolar transistor is epitaxially grown on the intrinsic base portion of the first base layer. A second base layer of the second heterojunction bipolar transistor is epitaxially grown on the device layer with an intrinsic base portion arranged on the second collector. A second emitter of the second heterojunction bipolar transistor is epitaxially grown on the intrinsic base portion of the second base layer. A connection is formed between the first emitter and the second collector.