Abstract:
A method of joining together adjacent overlapping copper workpieces by way of resistance spot welding involves providing a workpiece stack-up that includes a first copper workpiece and a second copper workpiece that lies adjacent to the first copper workpiece. The faying surface of the first copper workpiece includes a projection that ascends beyond a surrounding base surface of the faying surface and makes contact, either directly or indirectly, with an opposed faying surface of the second copper workpiece. Once provided, a compressive force is applied against the first and second copper workpieces and an electric current is passed momentarily through the first and second copper workpieces. The electric current initially flows through the projection to generate and concentrate heat within the projection prior to the projection collapsing. This concentrated heat surge allows a metallurgical joint to be established between the first and second copper workpieces.
Abstract:
A resistance spot welding method may involve spot welding a workpiece stack-up that includes a steel workpiece and an aluminum alloy workpiece. A pair of opposed welding electrodes are pressed against opposite sides of the workpiece stack-up with one welding electrode contacting the aluminum alloy workpiece and the other welding electrode contacting the steel workpiece. The welding electrodes are constructed so that, when an electrical current is passed between the electrodes and through the workpiece stack-up, the electrical current has a greater current density in the steel workpiece than in the aluminum alloy workpiece to thereby concentrate heat within a smaller zone in the steel workpiece. Concentrating heat within a smaller zone in the steel workpiece is believed to modify the solidification behavior of the resultant molten aluminum alloy weld pool in a desirable way.
Abstract:
An arc welding/brazing process is disclosed that is useful to join together a first copper piece and a second copper piece without damaging more heat-sensitive materials that may be located nearby is disclosed. The arc welding/brazing process includes using a non-consumable electrode wire, which electrically communicates with a weld control in a straight polarity orientation, to strike an arc across a gap established between a leading tip end of the electrode wire and the first copper piece. The current that flows through the arc when the arc is established heats the first copper piece such that the first copper piece becomes joined to a second copper piece. The joint between the first copper piece and the second copper piece may be an autogenous weld joint or a braze joint.
Abstract:
A method of forming a rotor includes inserting a conductor bar into a slot defined by a lamination stack to define a gap between the conductor bar and the lamination stack. The method further includes, after inserting, swelling the conductor bar within the slot to fill the gap and form the rotor. A rotor is also disclosed.
Abstract:
Aluminum alloy workpieces and/or magnesium alloy workpieces are joined in a solid state weld by use of a reactive material placed, in a suitable form, at the joining surfaces. Joining surfaces of the workpieces are pressed against the interposed reactive material and heated. The reactive material alloys or reacts with the workpiece surfaces consuming some of the surface material in forming a reaction product comprising a low melting liquid that removes oxide films and other surface impediments to a welded bond across the interface. Further pressure is applied to expel the reaction product and to join the workpiece surfaces in a solid state weld bond.
Abstract:
A method of resistance spot welding a steel workpiece to an aluminum or aluminum alloy workpiece is disclosed. One step of the disclosed method involves providing a workpiece stack-up that includes a steel workpiece and an aluminum workpiece. Another step involves preheating the welding electrode that is meant to contact the aluminum or aluminum alloy workpiece. Yet another step of the disclosed method involves pressing the preheated welding electrode and another welding electrode against opposite sides of the workpiece stack-up, with the preheated welding electrode abutting the aluminum or aluminum alloy workpiece, and passing an electrical current between the two welding electrodes at a weld site to initiate and grow a molten weld pool within the aluminum or aluminum alloy workpiece.