摘要:
The present invention provides an organic conductor comprising a deoxyribonucleic acid (DNA) and an electric charge-donating material bonded to the deoxyribonucleic acid, and an organic conductor comprising at least two DNAs; and an electric charge-transfer substance bonding to each base of the two DNAs.
摘要:
An electric part including a matrix-shaped nonconductive base member, and a carbon nanotube group that is sealed within the nonconductive base member and includes at least one of a carbon nanotube and a plurality carbon nanotubes that are electrically connected to each other. Substantially only an end portion of the carbon nanotube or at least carbon nanotube contained in the plurality of carbon nanotubes may be exposed from one surface of the nonconductive base member, and an electrode may be connected to a side surface of at least one carbon nanotube included in the carbon nanotube group.
摘要:
The method of manufacturing an electric part including a matrix-shaped nonconductive base member, and a carbon nanotube group that is sealed within the nonconductive base member and includes at least one of a carbon nanotube and a plurality carbon nanotubes that are electrically connected to each other. According to the method, substantially only an end portion of the carbon nanotube or at least carbon nanotube contained in the plurality of carbon nanotubes may be exposed from one surface of the nonconductive base member, and an electrode may be connected to a side surface of at least one carbon nanotube included in the carbon nanotube group.
摘要:
An electrical connection structure that is able to electrically connect wiring to a biopolymer, a production method of the electrical connection structure, and an electric wiring method which is able to perform wiring on a nanometer-scale. A first aspect of the production method of the present invention uses a carbon nanotube as an electrode, and makes the carbon nanotube contact the biopolymer. A second aspect of the production method applies electric current between the electrode and the biopolymer of the first aspect. The electrical connection structure of the present invention comprises at least the electrode formed by the carbon nanotube and the biopolymer, wherein the electrode is in contact with the biopolymer. In the electric wiring method of the present invention, the electrode formed by the carbon nanotube contacts the biopolymer to complete an electrical connection.
摘要:
An electrical connection structure that is able to electrically connect wiring to a biopolymer, a production method of the electrical connection structure, and an electric wiring method which is able to perform wiring on a nanometer-scale. A first aspect of the production method of the present invention uses a carbon nanotube as an electrode, and makes the carbon nanotube contact the biopolymer. A second aspect of the production method applies electric current between the electrode and the biopolymer of the first aspect. The electrical connection structure of the present invention comprises at least the electrode formed by the carbon nanotube and the biopolymer, wherein the electrode is in contact with the biopolymer. In the electric wiring method of the present invention, the electrode formed by the carbon nanotube contacts the biopolymer to complete an electrical connection.
摘要:
A transistor of nanometer size is provided, which is capable of high-speed operation and operates at room temperatures by using carbon nanotubes for semiconductor devices. The transistor uses a carbon nanotube ring having semiconductor characteristics as a semiconductor material, or a carbon nanotube ring having conductivity or semiconductor characteristics as an electrode material.
摘要:
The coating composition for an electric part contains carbon nanotubes each having a functional group, and a crosslinking agent crosslinking the functional groups through a crosslinking reaction associated with heating, and the crosslinking agent is glycerin and/or butanetriol. The method for forming a coating film contains: coating the coating composition for an electric part on a target material, and heating the coating composition to form a crosslinked film of carbon nanotubes.
摘要:
The present invention discloses a method of synthesizing an aliphatic polymer having a ketone group in the main chain thereof, in which polyhydric alcohol (for example, glycerin) as a raw material is polymerized in the presence of a catalyst, and a method of preparing a composition containing an aliphatic polymer having a ketone group in the main chain thereof, including such a process.
摘要:
The present invention provides an electrode for electrochemical measurement including a carbon nanotube, a catalyst causing a specific chemical reaction, and an insulator in which the carbon nanotube and the catalyst are embedded, wherein a part of the catalyst is exposed at the surface of the insulator and a part of the carbon nanotube is exposed at the surface of the insulator to form an electoconductive portion, or wherein a part of the catalyst is exposed at the surface of the insulator, and a part of the carbon nanotube is electrically connected to the exposed catalyst to form an electoconductive portion.
摘要:
The invention provides an aliphatic polymer having a ketone group and ether bonding in its main chain, characterized by comprising structural units represented by the Formula (1) and by the Formula (2). In the Formulae (1) and (2), Ra and Rb each independently represents a substituted or unsubstituted divalent aliphatic hydrocarbon group. Rc represents a substituted or unsubstituted divalent aliphatic hydrocarbon group having ether bonding in a terminal thereof, or a single bond. n1 represents an integer of 1 or more. n2 represents an integer of 0 or more. And, n1+n2 is in a range of 2 to 1000. The polymer preferably contains ether bonds and ketone groups in a ratio of 0.01 to 100. The polymer can be substantially comprised of a structural unit represented by the Formula (1) as a repeating unit. A resin composition containing as a component structural units represented by the Formula (1) is also provided. The resin composition may further comprise an electrically conductive powder.