摘要:
Provided are an apparatus and method for collecting shopping information using a magnetic sensor. The shopping information collecting apparatus, includes: a magnetic value sensing and analyzing means for sensing and analyzing a magnetic value within own zone in real-time; a central processing means for processing shopping information based on the magnetic value analyzed by the magnetic value sensing and analyzing means; and a shopping information transmitting means for transmitting shopping information processed by the central processing means.
摘要:
An optical transmitter has a resonance wavelength characteristic that varies with the refractive index of the optical transmitter. The optical transmitter receives a narrow band injected wavelength signal from an incoherent light source. The controller substantially matches a resonant wavelength of the optical transmitter to the wavelength of the injected wavelength signal by changing the refractive index of the optical transmitter to substantially match the resonant wavelength of the optical transmitter and the wavelength of the injected wavelength signal. A detector measures a parameter of the optical transmitter to provide a feedback signal to a controller to determine when the resonant wavelength of the optical transmitter and the wavelength of the injected wavelength signal are substantially matched.
摘要:
There are provided a semiconductor device having a vertical transistor and a method of fabricating the same. The method includes preparing a semiconductor substrate having a cell region and a peripheral circuit region. Island-shaped vertical gate structures two-dimensionally aligned along a row direction and a column direction are formed on the substrate of the cell region. Each of the vertical gate structures includes a semiconductor pillar and a gate electrode surrounding a center portion of the semiconductor pillar. A bit line separation trench is formed inside the semiconductor substrate below a gap region between the vertical gate structures, and a peripheral circuit trench confining a peripheral circuit active region is formed inside the semiconductor substrate of the peripheral circuit region. The bit line separation trench is formed in parallel with the column direction of the vertical gate structures. A bit line separation insulating layer and a peripheral circuit isolation layer are formed inside the bit line separation trench and the peripheral circuit trench, respectively.
摘要:
The present invention relates to a catalyst for removing aromatic halogenated compounds comprising dioxin, carbon monoxide and nitrogen oxide simultaneously and a method for preparing the catalyst, more particularly, a catalyst comprising 0.1 to 5% by weight of vanadium, 1 to 12% by weight of metals in 6A family and 0.1 to 10% by weight of Ag in titania carrier or, alternatively, a catalyst produced by impregnating said catalyst in 0.05 to 1M sulfuric acid solution to carry out acid treatment. The catalyst according to the present invention has improved efficiency for removing 1,2-dichlorobenzene as a reactant model of dioxin and carbon monoxide rather than existing catalysts and also, alternative efficiency for removing nitrogen oxide substantially equal to commonly known catalysts, so that the catalyst can effectively control various air pollutants contained in exhaust gas.
摘要:
The present invention relates to a counter electrode for DSSC which includes a porous membrane include a carbon-based material calcinated at high temperature and a platinum nano-particles and maintains higher conductivity than a thin membrane and in which the electrolyte moves smoothly, a method of preparing the same, and a DSSC using the same which is improved in photoelectric efficiency.
摘要:
Integrated circuit devices include a semiconductor substrate having a plurality of trench isolation regions therein that define respective semiconductor active regions therebetween. A trench is provided in the semiconductor substrate. The trench has first and second opposing sidewalls that define opposing interfaces with a first trench isolation region and a first active region, respectively. A first electrical interconnect is provided at a bottom of the trench. An electrically insulating capping pattern is provided, which extends between the first electrical interconnect and a top of the trench. An interconnect insulating layer is also provided, which lines the first and second sidewalls and bottom of the trench. The interconnect insulating layer extends between the first electrical interconnect and the first active region. A recess is provided in the first active region. The recess has a sidewall that defines an interface with the interconnect insulating layer. A second electrical interconnect is also provided, which extends on: (i) an upper surface of the first trench isolation region, (ii) the electrically insulating capping pattern; and (iii) the sidewall of the recess. The first and second electrical interconnects extend across the semiconductor substrate in first and second orthogonal directions, respectively.
摘要:
A semiconductor device having a cell area and a peripheral area includes a semiconductor substrate, a cell insulating isolation region delimiting a cell active region of the semiconductor substrate in the cell area, a word line disposed within the semiconductor substrate in the cell area, a bit line contact plug disposed on the cell active region, a bit line disposed on the bit line contact plug, a peripheral insulating isolation region delimiting a peripheral active region of the semiconductor substrate in the peripheral area, and a peripheral transistor including a peripheral transistor lower electrode and a peripheral transistor upper electrode. The bit line contact plug is formed at the same level in the semiconductor device as the peripheral transistor lower electrode, and the bit line electrode is formed at the same level in the semiconductor device as the peripheral transistor upper electrode.
摘要:
A semiconductor device includes a semiconductor substrate having a cell region and a peripheral circuit region defined therein. A buried word line is disposed in the substrate in the cell region and has a top surface lower than top surfaces of cell active regions in the cell region. A gate line is disposed on the substrate in the peripheral circuit region. A word line interconnect is disposed in the substrate in the peripheral circuit region, the word line interconnect including a first portion contacting the buried word line and having a top surface lower than a top surfaces of the cell active regions and a second portion that is overlapped by and in contact with the gate line.
摘要:
A semiconductor device may include a substrate having a cell active region. A cell gate electrode may be formed in the cell active region. A cell gate capping layer may be formed on the cell gate electrode. At least two cell epitaxial layers may be formed on the cell active region. One of the at least two cell epitaxial layers may extend to one end of the cell gate capping layer and another one of the at least two cell epitaxial layers may extend to an opposite end of the cell gate capping layer. Cell impurity regions may be disposed in the cell active region. The cell impurity regions may correspond to a respective one of the at least two cell epitaxial layers.
摘要:
A semiconductor device having a cell area and a peripheral area includes a semiconductor substrate, a cell insulating isolation region delimiting a cell active region of the semiconductor substrate in the cell area, a word line disposed within the semiconductor substrate in the cell area, a bit line contact plug disposed on the cell active region, a bit line disposed on the bit line contact plug, a peripheral insulating isolation region delimiting a peripheral active region of the semiconductor substrate in the peripheral area, and a peripheral transistor including a peripheral transistor lower electrode and a peripheral transistor upper electrode. The bit line contact plug is formed at the same level in the semiconductor device as the peripheral transistor lower electrode, and the bit line electrode is formed at the same level in the semiconductor device as the peripheral transistor upper electrode.