Abstract:
Systems, apparatuses, and methods may include a first power source to output power at a first normal power level and a first peak power level and a second power source cooperating with the first power source to output power at a second normal power level and a second peak power level. A system peak power control unit may monitor workload power requirements and cause the first power source to output the first peak power level at a first time period and cause the second power source to output the second peak power level at a second time period, different from the first time period. The time periods may be contiguous or discontiguous.
Abstract:
Techniques for processing audio data are described. An example of a computing device includes a microphone array to generate audio data and a camera. The computing device is to receive video data from the camera and identify a beam forming target based, at least in part, on the video data. The computing device also includes a beam former to process the audio data to aim a beam of the microphone array at the beam forming target.
Abstract:
A control mechanism and method for a hybrid hinge for electronic devices are disclosed. A particular embodiment includes: a hybrid hinge for an electronic device, the hybrid hinge comprising: a pivot; and an auxiliary component including one or more electro-magnetic or electro-mechanical devices and a variable electrical power source, the one or more electro-magnetic or electro-mechanical devices being configured to apply a variable degree of torque force to the pivot based on a degree of electrical power supplied by the electrical power source.
Abstract:
Particular embodiments described herein provide for an electronic device, such as a notebook computer or laptop, that includes a circuit board coupled to a plurality of electronic components (which includes any type of components, elements, circuitry, etc.). One particular example implementation of the electronic device may include a first housing, a hinge, and a second housing. The second housing can be rotatably coupled to the first housing using the hinge. The second housing can include a first portion, a second hinge, and a second portion. The second portion can be rotatably coupled to the first portion using the second hinge. In an embodiment, the second portion can rotate over the keyboard and the second housing can rotate behind the display. In another embodiment, the second portion can rotate over the key-board and the second housing can rotate in front of the display such that only a portion of display is visible.
Abstract:
Embodiments are generally directed to a camera to capture multiple sub-images for the generation of an image. An embodiment of a camera assembly includes one or more lenses to transmit light from a scene, and an image sensor to simultaneously capture a plurality of sub-images of the scene via the one or more lenses, the plurality of sub-images including a first sub-image and a second sub-image. A processing element is to process the sub-images sensed by the image sensor, the processing of the sub-images includes combining at least the first sub-image and the second sub-image to generate a combined image of the scene.
Abstract:
An electronic device is described herein. The electronic device includes a portable housing for the electronic device. A zipper of the portable housing is to enable access to the electronic device. Additionally, the electronic device includes a flexible display integrated into the portable housing. The zipper may enable electromagnetic interference (EMI) shielding while enclosing the electronic device and associated components within the portable form factor. In embodiments, a flexible magnetic seal may be used to enclose the electronic device and associated components within the portable form factor.
Abstract:
Methods and apparatus relating to a location aware power management scheme for an always-on-always-listen voice recognition system are described. In an embodiment, logic performs ambient noise trigger level analysis for a location and causes storage of an ambient noise trigger level threshold value for the location based on the ambient noise trigger level analysis. Furthermore, logic determines whether to cause modification to a state of an audio processor in response to detection of the audio processor at the location and comparison of a detected sound level at the location and the stored ambient noise trigger level threshold value. Other embodiments are also disclosed and claimed.
Abstract:
A method and system are described herein for detecting a capacity for a power adapter. An example of a method includes detecting an increase in power consumption by a computing device attached to the power adapter. The method can also include detecting a droop in voltage received from the power adapter. Additionally, the method can include storing the current that corresponds with the droop.
Abstract:
Techniques and mechanisms for providing redundancy with multiple batteries of a backup power system. In an embodiment, switch circuits are each coupled between a power bus and a different respective one of the multiple batteries. Respective nodes of the switch circuits are each to couple to a different respective power sink, wherein power delivery to the power sinks is monitored. Based on the monitoring, the switch circuits are configured for a first battery to serve a substitute for a second battery. Configuring the switch circuits includes electrically decoupling the second battery from a first node, and electrically coupling the first battery to deliver power via both a power bus and the first node. In another embodiment, multiple backup units each include a respective battery and switch circuit, wherein respective controllers of the backup units intermittently communicate monitoring information via a data bus.
Abstract:
In some examples, a control unit is configured to control a computer server rack having a first grid power source, a second grid power source, and a battery backup system. The control unit is adapted to monitor a failed status of one or more power supply units in the computer server rack, to determine location information relating to the one or more power supply units having the failed status, to determine input power of the one or more power supply units having the failed status, to adjust an input power of the first grid power source based on the determined input power, and to adjust an input power of the second grid power source based on the determined input power.