Abstract:
A cable assembly is used to connect elements of a computing system. The cable assembly may include a first cable and a connector. The first cable includes an external portion having a first conductor, an electromagnetic (EMC) shielding jacket for the first conductor and a connector disposed at an end of the first conductor. Further, the first cable includes an internal portion comprising a second conductor and a connector disposed on an end of the second conductor. However, the internal portion lacks an EMC shielding jacket for the second conductor. The external portion of the first cable and the internal portion of the first cable form a continuous cable. The connector device comprises a shield area configured to electrically couple with a chassis of a node of a computer system and a retainer configured to physically couple the cable assembly with the chassis. The connector is configured to electrically couple the external portion of the first cable with the chassis, and wherein the external portion of the first cable meets the internal portion of the first cable at the connector device.
Abstract:
A latch mechanism is provided for latching a field-replaceable unit within an enclosure. The latch mechanism includes a pivotable latch coupled to the field-replaceable unit via a pivot, at a first side of the unit, and a spring member associated with the enclosure. The spring member is engaged by the latch and deflects with rotating of the latch from an open position to a latched position. The pivotable latch includes the first end and a second end, with the pivot being disposed closer to the first end than the second. The deflecting spring member facilitates provision of positive pressure on the unit directed towards a second side of the unit opposite to the first side to facilitate, for example, fixedly coupling a first connector at the second side to a second connector associated with the enclosure when the unit is latched within the enclosure.
Abstract:
Methods of fabricating tamper-respondent assemblies are provided which include an electronic enclosure, a tamper-respondent electronic circuit structure, and at least one security element. The electronic enclosure encloses, at least in part, at least one electronic component to be protected, and includes an inner surface. The tamper-respondent electronic circuit structure includes a tamper-respondent sensor covering, at least in part, the inner surface of the electronic enclosure, and the at least one security element overlies and physically secures in place, at least in part, the tamper-respondent sensor covering, at least in part, the inner surface of the electronic enclosure. In enhanced embodiments, the electronic enclosure is secured to a multilayer circuit board which includes an embedded tamper-respondent sensor, and together, the tamper-respondent sensor covering the inner surface of the electronic enclosure and the embedded tamper-respondent sensor within the multilayer circuit board define a secure volume about the electronic component(s).
Abstract:
Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure to circuit board protection. The tamper-respondent assemblies include a circuit board, and an electronic enclosure mounted to the circuit board and facilitating enclosing at least one electronic component within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and the tamper-respondent electronic circuit structure includes a tamper-respondent circuit. An adhesive is provided to secure, in part, the electronic enclosure to the circuit board. The adhesive contacts, at least in part, the tamper-respondent circuit so that an attempted separation of the electronic enclosure from the circuit board causes the adhesive to break the tamper-respondent circuit, facilitating detection of the separation by a monitor circuit of the tamper-respondent electronic circuit structure.
Abstract:
Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure to circuit board protection. The tamper-respondent assemblies include a circuit board, and an electronic enclosure mounted to the circuit board and facilitating enclosing at least one electronic component within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and the tamper-respondent electronic circuit structure includes a tamper-respondent circuit. An adhesive is provided to secure, in part, the electronic enclosure to the circuit board. The adhesive contacts, at least in part, the tamper-respondent circuit so that an attempted separation of the electronic enclosure from the circuit board causes the adhesive to break the tamper-respondent circuit, facilitating detection of the separation by a monitor circuit of the tamper-respondent electronic circuit structure.
Abstract:
Fabrication of a latch mechanism is provided for latching a field-replaceable unit within an enclosure. The latch mechanism includes a pivotable latch coupled to the field-replaceable unit via a pivot, at a first side of the unit, and a spring member associated with the enclosure. The spring member is engaged by the latch and deflects with rotating of the latch from an open position to a latched position. The pivotable latch includes the first end and a second end, with the pivot being disposed closer to the first end than the second. The deflecting spring member facilitates provision of positive pressure on the unit directed towards a second side of the unit opposite to the first side to facilitate, for example, fixedly coupling a first connector at the second side to a second connector associated with the enclosure when the unit is latched within the enclosure.
Abstract:
Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure to circuit board protection. The tamper-respondent assemblies include a circuit board, and an electronic enclosure mounted to the circuit board and facilitating enclosing at least one electronic component within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and the tamper-respondent electronic circuit structure includes a tamper-respondent circuit. An adhesive is provided to secure, in part, the electronic enclosure to the circuit board. The adhesive contacts, at least in part, the tamper-respondent circuit so that an attempted separation of the electronic enclosure from the circuit board causes the adhesive to break the tamper-respondent circuit, facilitating detection of the separation by a monitor circuit of the tamper-respondent electronic circuit structure.
Abstract:
One aspect of the invention discloses an apparatus for mating computing device structures. The apparatus comprises one or more rotatable latches, the one or more rotatable latches each including a respective screw mechanism housed within the one or more rotatable latches. The apparatus further comprises one or more spring assemblies, the one or more spring assemblies each including a respective thread assembly housed within the one or more spring assemblies. The respective thread assemblies comprise threading that is capable of receiving a corresponding screw mechanism of the one or more rotatable latches.
Abstract:
One aspect of the invention discloses an apparatus for mating computing device structures. The apparatus comprises one or more rotatable latches, the one or more rotatable latches each including a respective screw mechanism housed within the one or more rotatable latches. The apparatus further comprises one or more spring assemblies, the one or more spring assemblies each including a respective thread assembly housed within the one or more spring assemblies. The respective thread assemblies comprise threading that is capable of receiving a corresponding screw mechanism of the one or more rotatable latches.
Abstract:
An interconnection assembly for a motherboard uses right-angle edge connectors attached to a bottom side of the motherboard, and vertical header connectors attached to the top side. The header connectors mate with a transition card assembly which includes a transition card having plated through holes that receive pins of the header connectors. Right-angle mezzanine connectors mounted on the transition card have pins that extend into the plated through holes from the top side. The edge connectors and mezzanine connectors both face forward in a common direction. The transition card has holes along a rear edge to retain pressed-in nuts for mounting to a stabilizing bezel. Instead of pins being part of the header connectors, connector caps may be provided with pins having first ends that extend into sockets of the header connectors and second ends that extend into the plated through holes of the transition card.