Abstract:
The present invention discloses an improved probe structure, which comprises: a casing having an opening; a sleeve arranged inside the casing and around the opening; a temperature sensor installed inside the sleeve; a curved solid circularly arranged along the inner rim of the opening and above the temperature sensor. Owing to the curved solid, the detection angle can be reduced, and the detected temperature is closer to the eardrum temperature; further, the gap between the casing and the temperature sensor can be decreased, and the volume of the probe structure can be reduced.
Abstract:
A welding head with heat-conducting structure for a gas welding gun comprises: a housing, a welding head and a non-flat net-like heating member. The housing is formed with a recess and a plurality of air holes in communication with the recess. The welding head is installed on the housing and formed with a guiding slope being located correspondingly to the air holes of the housing, and between the guiding slope and the air holes of the housing is formed a space. The non-flat net-like heating member received in the recess of the housing. The heating effect of the heating member is substantially increased by improving the contacting area. The heat produced during gas combustion will be discharged via the air holes and then guided to flow in the direction of the guide slope, and thus it can be prevented from damaging the neighboring electronic components.
Abstract:
A plated magnetic thin film of high saturation magnetization and low coercivity having the general form Co100-a-bFeaMb, where M can be Mo, Cr, W, Ni or Rh, which is suitable for use in magnetic recording heads that write on narrow trackwidth, high coercivity media. The plating method that produces the alloy includes four current application processes: direct current, pulsed current, pulse reversed current and conditioned pulse reversed current.
Abstract:
Apparatus and method for generating a variable-frequency clock is disclosed. A control state machine defines various commands and generates corresponding control signals. A variable-frequency clock generator then outputs the variable-frequency clock that has a specific pattern corresponding with the respective command, where the variable-frequency clock is constructed with a first clock and a second clock having a frequency different from the first clock. A control signals generator accordingly outputs the control signals that are also constructed with the first clock and the second clock.
Abstract:
A method for providing a variable frequency clock for a SDRAM. First, receiving a clock with a fixed frequency and a plurality of signals, wherein each the signal is an interlace combination of a plurality of high level signals and a plurality of low levels signals. Second, extracting a plurality of proper positions from the signals, wherein each low level of each the signal corresponds to a proper position. Third, amending the frequency of the clock such that each the proper position corresponds to a rising edge of the clock.
Abstract:
A method for manufacturing the lower electrode of a DRAM capacitor. The method includes depositing polysilicon instead of amorphous silicon to form the lower electrode. Because polysilicon has a higher depositing temperature, it has a higher depositing rate capable of shortening depositing time. After forming the polysilicon lower electrode, the upper portion of the polysilicon layer is transformed into an amorphous layer by bombarding the polysilicon layer with ions to damage its internal structure. Eventually, hemispherical grain silicon is able to grow over the lower electrode, thereby increasing its surface area.
Abstract:
A process of fabricating a bottom electrode for the storage capacitors of DRAM is disclosed. The process includes first forming an insulation layer on the surface of the device substrate, with the insulation layer patterned to form a contact opening that exposes a source/drain region of the memory cell transistor. A first conductive layer then covers the insulation layer and fills into the contact opening, with the first conductive layer contacting the exposed source/drain region. A native oxide layer is then formed on the surface of the first conductive layer. A second electrically conductive layer is then formed and patterned to form a recess substantially above the location of the contact opening in the insulation layer. A layer of HSG—Si then covers the surface of the second conductive layer and the surface of the recess, and the HSG—Si layer and the second conductive layer are patterned to form the bottom electrode of the capacitor. The recess and its covering HSG—Si layer increase the effective surface area of the bottom electrode of the capacitor.
Abstract:
A method of fabricating a node contact window. A substrate having devices and a first dielectric layer is provided. Bit lines having spacer are formed on the first dielectric layer and a second is formed on the first dielectric layer. A hard material layer is then formed on the second dielectric layer. An opening is formed within the second dielectric layer to expose the spacer and the first dielectric layer. A polysilicon spacer is then formed on the sidewalls of the opening. A node contact window is formed by etching through the first dielectric layer to expose the substrate.