摘要:
A perpendicular magnetic recording medium adapted for high recording density and high data recording rate comprises a non-magnetic substrate having at least one surface with a layer stack formed thereon, the layer stack including a perpendicular recording layer containing a plurality of columnar-shaped magnetic grains extending perpendicularly to the substrate surface for a length, with a first end distal the surface and a second end proximal the surface, wherein each of the magnetic grains has: (1) a gradient of perpendicular magnetic anisotropy field Hk extending along its length between the first end and second ends; and (2) predetermined local exchange coupling strengths along the length.
摘要:
An apparatus includes a recording media including a substrate, a plurality of tracks of magnetic material on the substrate, and a non-magnetic material between the tracks; a recording head having an air bearing surface positioned adjacent to the recording media, and including a magnetic pole, an optical transducer, and a near-field transducer, wherein the near-field transducer directs electromagnetic radiation onto tracks to heat portions of the tracks and a magnetic field from the magnetic pole is used to create magnetic transitions in the heated portions of the tracks; and a plasmonic material positioned adjacent to the magnetic material to increase coupling between the electromagnetic radiation and the magnetic material.
摘要:
A resistive random access memory (RRAM) cell that includes a first electrode having a lower portion, a continuous side portion and an upper portion, the lower portion and the continuous side portion having an outer surface and an inner surface; a resistive layer having a lower portion, a continuous side portion and an upper portion, the lower portion and the continuous side portion having an outer surface and an inner surface; and a second electrode having a lower portion, an upper portion and an outer surface; wherein the outer surface of the resistive layer directly contacts the inner surface of the first electrode.
摘要:
Embodiments of the invention provide a multi-terminal resistance device with first and second electrodes, a shared third electrode, and a resistance layer providing first and second current paths between the shared third electrode and the first and second electrodes, respectively. A current state of the device may be programmed by applying one or more electrical signals along the first and/or second current paths to change a resistance of the device. In some embodiments, applying an electrical signal may switch a junction resistance of the first and/or second electrodes and the resistance layer between two or more resistance values. The device may include a shared fourth electrode to provide extra programming capability. In some embodiments, the device may be used to store a data state, to determine a count of multiple electrical signals, or to perform a logic operation between two electrical signals.
摘要:
A bit patterned media (BPM) includes many magnetic dots arranged in tracks on a substrate. The magnetic dots each have a hard magnetic core, a soft magnetic cladding surrounding the core and a thin non-magnetic layer that separates the hard magnetic core from the soft magnetic ring. The soft magnetic cladding stabilizes the magnetization at the edges of the hard magnetic core to improve the signal to noise ratio of the magnetic dots. The soft magnetic rings also narrow the magnetic field of the dots which reduces the space requirements and allows more dots to be placed on the substrate.
摘要:
A magnetic sensor includes a reference layer having a first magnetization direction and a free layer assembly having an effective magnetization direction substantially perpendicular to the first magnetization direction and substantially perpendicular to a plane of each layer of the free layer assembly. A spacer layer is between the reference layer and the free layer, and a signal enhancement layer is exchange coupled to the free layer assembly on a side opposite the spacer layer.
摘要:
A magnetic sensor for reading information from a magnetic medium. The magnetic sensor includes a bottom electrode and a first sensor disposed above the bottom electrode. The magnetic sensor also includes a middle electrode disposed above the first sensor, a second sensor disposed above the middle electrode and a top electrode disposed above the second sensor. The bottom electrode, the middle electrode and the top electrode are utilized to electrically connect the first sensor and the second sensor in parallel.
摘要:
The present invention relates to a memory cell including a first reference layer having a first magnetization with a first magnetization direction and a second reference layer having a second magnetization with a second magnetization direction substantially perpendicular to the first magnetization direction. A storage layer is disposed between the first reference layer and second reference layer and has a third magnetization direction about 45° from the first magnetization direction and about 135° from the second magnetization direction when the memory cell is in a first data state, and a fourth magnetization direction opposite the third magnetization direction when the memory cell is in a second data state.
摘要:
A magnetic writer includes a write element and an oscillation device disposed adjacent to the write element. The first oscillation device includes a first magnetic layer, a second magnetic layer having a magnetization vector including a component perpendicular to a major plane of the first magnetic layer. The first nonmagnetic layer disposed between the first magnetic layer and the second magnetic layer. The first oscillation device generates a high-frequency oscillation field when a current is directed perpendicular to the major plane of the first magnetic layer.
摘要:
A magnetic sensor is provided. The magnetic sensor includes a magnetoresistive multi-layered portion that has a first resistance region and a second resistance region. At least two contacts are coupled to the magnetoresistive multi-layered portion. A sensing current flows from a first contact of the at least two contacts to a second contact of the at least two contacts via the first resistance region and the second resistance region of the magnetoresistive multi-layered portion. The first resistance region promotes a primary flow of the sensing current in a first direction substantially perpendicular to surface planes of the layers of the magnetoresistive multi-layered portion, and the second resistance region promotes the primary flow of the sensing current in a second direction substantially in parallel to surface planes of the layers of the magnetoresistive multi-layered portion.