Abstract:
A non-volatile memory is described that utilizes a cache read mode of operation, where a next page of memory is being read/sensed from the memory array by the sense amplifiers while a previously read page of memory is being read from the memory I/O buffer, wherein the next page is user selected. This random cache read mode allows for a memory with a random page read capability, in which the address of the next page of data to be read is user selectable, which benefits from the low latency of a cache read mode of operation due to concurrent data sensing and data I/O.
Abstract:
A memory architecture especially adapted to provide an architecture to house one or more TCCT-based memory cells and to provide a reference signal. The memory architecture is designed to effectively resolve stored information from memory cells into logical values, such as logical “0” and “1.” An exemplary memory architecture includes a data block that comprises a first set of one or more bit lines, where a word line one line extends to a first subset of the first set of the one or more bit lines. The data block also includes a word line two line extending to a second subset of the first set of the one or more bit lines. A memory cell is coupled to the word line one line, the word line two line and a common bit line of the first and second subsets of bit lines.
Abstract:
An address buffer circuit for a semiconductor memory device includes first and second address inputs which are selectably connectable to a first node according to first and second address input control signals, respectively. The device also includes first and second switches which are controlled by a refresh mode signal and selectively output a first or second address enable signal. Further, a latch is provided which latches the address signal input to the first node, and outputs the latched address signal in periods of the selected first or second address enable signals.
Abstract:
A vertical memory device includes a channel, a ground selection line (GSL), word lines and a string selection line (SSL). The channel extends in a first direction substantially perpendicular to a top surface of a substrate, and a thickness of the channel is different according to height. The GSL, the word lines and the SSL are sequentially formed on a sidewall of the channel in the first direction and spaced apart from each other.
Abstract:
Methods and apparatus are disclosed, such as those involving a flash memory device. One such method includes storing data on memory cells on a memory block including a plurality of word lines and a plurality of memory cells on the word lines. The word lines comprising one or more bottom edge word lines, one or more top edge word lines, and intermediate word lines between the bottom and top edge word lines. The data is stored first on memory cells on the intermediate word lines. Then, a remaining portion, if any, of the data is stored on memory cells on the bottom edge word lines and/or the top edge word lines. This method enhances the life of the flash memory by preventing a premature failure of memory cells on the bottom or top edge word lines, which can be more prone to failure.
Abstract:
The invention provides methods and apparatus. A NAND flash memory device receives command and address signals at a first frequency and a data signal at a second frequency that is greater than the first frequency.
Abstract:
A non-volatile memory array with both single level cells and multilevel cells. The single level and multilevel cells, in one embodiment, are alternated either along each bit line. An alternate embodiment alternates the single and multilevel cells along both the bit lines and the word lines so that no single level cell is adjacent to another single level cell in either the word line or the bit line directions.
Abstract:
The present disclosure includes methods, devices, modules, and systems for operating memory cells. One method embodiment includes applying sensing voltages to selected access lines for sensing selected memory cells. The method also includes applying a dynamic pass voltage to unselected access lines while the sensing voltages are applied.
Abstract:
A target memory cell of a memory device is programmed by applying a programming voltage to a word line that includes the target memory cell, determining whether the target memory cell is programmed, and increasing the programming voltage by a step voltage if it is determined that the target memory cell is not programmed. An initial programming voltage and the step voltage are each selectable after fabrication of the memory device.
Abstract:
Apparatus and methods are disclosed, such as those involving a flash memory device. One such apparatus includes a memory block including a plurality of columns. Each of the columns includes a bit line and a plurality of memory cells on the bit line. The plurality of columns include a plurality of groups of regular columns and a plurality of groups of redundant columns. The apparatus also includes a plurality of data latches. Each of the data latches is configured to store data read from a respective one group of regular columns. The apparatus further includes a plurality of redundant data latches. Each of the redundant data latches is configured to store data read from a respective one group of redundant columns. The apparatus also includes a multiplexer configured to selectively output data from the plurality of data latches and the plurality of redundant data latches.