Abstract:
A Schottky barrier integrated circuit is disclosed, the circuit having at least one PMOS device or at least one NMOS device, at least one of the PMOS device or NMOS device having metal source-drain contacts forming Schottky barrier or Schottky-like contacts to the semiconductor substrate. The device provides a lower capacitance between source and gate, which improves device and circuit power and speed performance.
Abstract:
The band-pass filter has a stacked pair of film bulk acoustic resonators (FBARs) and an acoustic decoupler between the FBARs. Each of the FBARs has opposed planar electrodes and a layer of piezoelectric material between the electrodes. The acoustic decoupler controls the coupling of acoustic energy between the FBARs. Specifically, the acoustic decoupler couples less acoustic energy between the FBARs than would be coupled by direct contact between the FBARs. The reduced acoustic coupling gives the band-pass filter desirable in-band and out-of-band properties.
Abstract:
Easy to assemble and disassemble tables have continuous frame members with at least two tapered sockets which support table legs. The continuous frame members are identical and thus can be used interchangeably as table bases and table top supports. The center of each taper within the continuous frame member is in the same position. Tapered sockets within each frame member insure that legs inserted into those sockets are parallel to one another. The parallelity of the table legs is further enhanced by inserting the other end of the table leg into a corresponding frame member in which the tapers are identically spaced. The tables are easy to assemble by inserting the tapered table legs into the “self-holding” tapered sockets in the frame members. Easy disassembly of the tables is facilitated by quick release mechanisms which press the end of the leg seated in the socket to displace the leg from the socket.
Abstract:
The band-pass filter has first terminals, second terminals, a first decoupled stacked bulk acoustic resonator (DSBAR), a second DSBAR, and an electrical circuit connecting the first DSBAR and the second DSBAR in series between the first terminals and the second terminals. Each DSBAR has a first film bulk acoustic resonator (FBAR), a second FBAR and an acoustic decoupler between the FBARs. Each FBAR has opposed planar electrodes and a piezoelectric element between the electrodes.
Abstract:
The encapsulated film bulk acoustic resonator (FBAR) device comprises a substrate, an FBAR stack over the substrate, an element for acoustically isolating the FBAR stack from the substrate, encapsulant covering the FBAR stack, and an acoustic Bragg reflector between the top surface of the FBAR stack and the encapsulant. The FBAR stack comprises an FBAR and has a top surface remote from the substrate. The FBAR comprises opposed planar electrodes and a piezoelectric element between the electrodes. The acoustic Bragg reflector comprises a metal Bragg layer and a plastic Bragg layer juxtaposed with the metal Bragg layer. The large ratio between the acoustic impedances of the metal of the metal Bragg layer and the plastic material of the plastic Bragg layer enables the acoustic Bragg reflector to provide sufficient acoustic isolation between the FBAR and the encapsulant for the frequency response of the FBAR device to exhibit minor, if any, spurious artifacts arising from undesirable acoustic coupling between the FBAR and the encapsulant.
Abstract:
The invention is directed to a device for regulating the flow of electric current with high dielectric constant gate insulating layer and a source and/or drain forming a Schottky contact or Schottky-like region with a substrate and its fabrication method. In one aspect, the gate insulating layer has a dielectric constant greater than the dielectric constant of silicon. In another aspect, the current regulating device may be a MOSFET device, optionally a planar P-type or N-type MOSFET, having any orientation. In another aspect, the source and/or drain may consist partially or fully of a silicide.
Abstract:
The film acoustically-coupled transformer (FACT) has a first and second decoupled stacked bulk acoustic resonators (DSBARs). Each DSBAR has a lower film bulk acoustic resonator (FBAR), an upper FBAR atop the lower FBAR, and an acoustic decoupler between them FBARs. Each FBAR has opposed planar electrodes and a piezoelectric element between the electrodes. A first electrical circuit interconnects the lowers FBAR of the first DSBAR and the second DSBAR. A second electrical circuit interconnects the upper FBARs of the first DSBAR and the second DSBAR. In at least one of the DSBARs, the acoustic decoupler and one electrode of the each of the lower FBAR and the upper FBAR adjacent the acoustic decoupler constitute a parasitic capacitor. The FACT additionally has an inductor electrically connected in parallel with the parasitic capacitor. The inductor increases the common-mode rejection ratio of the FACT.
Abstract:
The band-pass filter has a stacked pair of film bulk acoustic resonators (FBARs) and an acoustic decoupler between the FBARs. Each of the FBARs has opposed planar electrodes and a layer of piezoelectric material between the electrodes. The acoustic decoupler controls the coupling of acoustic energy between the FBARs. Specifically, the acoustic decoupler couples less acoustic energy between the FBARs than would be coupled by direct contact between the FBARs. The reduced acoustic coupling gives the band-pass filter desirable in-band and out-of-band properties.
Abstract:
A computer system includes a plurality of memory modules that contain semiconductor memory, such as DIMMs. The system includes a host/data controller that utilizes an XOR engine to store data and parity information in a striped fashion on the plurality of memory modules to create a redundant array of industry standard DIMMs (RAID). The host/data controller also interleaves data on a plurality of channels associated with each of the plurality of memory modules.
Abstract:
The present invention is a field effect transistor having a strained semiconductor substrate and Schottky-barrier source and drain electrodes, and a method for making the transistor. The bulk charge carrier transport characteristic of the Schottky barrier field effect transistor minimizes carrier surface scattering, which enables the strained substrate to provide improved power and speed performance characteristics in this device, as compared to conventional devices.